SURVEY FOR CONTAMINANTS IN SEDIMENTS

AT SELECTED SITES

ON THE

UPPER MISSISSIPPI RIVER

(RM 579 to RM 3)

including the

Mark Twain National Wildlife Refuge

Melanie Young
U.S. Fish and Wildlife Service
Rock Island Field Office
Rock Island, Illinois

September 1991

Acknowledgements

The author would like to acknowledge the following individuals for their assistance in sample collections along portions of the Mississippi River: Dick Ruelle, U.S. Fish and Wildlife Service, Pierre, South Dakota; Tom Nash, U.S. Fish and Wildlife Service, Columbia, Missouri; and Dan Garver, Illinois Department of Conservation, Murphysboro, Illinois. The author would also like to acknowledge the University of Iowa-Hygienics Laboratory in Des Moines, Iowa for their role in conducting the bioassays for the Service.

Abstract

A regional study of contaminants in sediments at selected locations on the Upper Mississippi River was conducted during the 1989 field season. The study focused primarily on areas within and adjacent to the Mark Twain National Wildlife Refuge (NWR), the Clarence Cannon NWR, other areas of critical importance to migratory waterfowl, and selected industrial sites at various locations throughout the basin. Bed sediments were collected at pre-designated sampling locations. Chemical analysis and fathead minnow bioassays were performed on samples from each location. A comparison of the analyses has confirmed several critical areas of concern or "hot spots", throughout the study area.

ab f Co

i

Ackn :dg

Abs

t ab

Li **f** qu

Appe id.

odu

dy

Mothod ogy

amp Co ct Chemi An oxic y Te

R ts nd

ed rg

im tat

ry

List of Tables

Table	1.	Upper Mississippi River 1989 survey sampling sites - bottom sediments .	. 5-9
Table	2.	A summary of locations on the Upper Mississippi River where sediment toxicity resulted in 50% or greater larval fathead minnow mortality in a 96-hour bioassay (from Appendix D)	14
Table	3.	Summary of the range of metal concentrations sampled, and elevated concentrations, with locations (from Appendix A)	15

List of Figures

Figure 1.	Sampling locations on the Upper	
•	Mississippi River 1989	. 2-3

List of Appendices

Appendix A:

Table A-1. Concentrations (mg/kg dry weight) of inorganic elements detected in sediments collected from the Mississippi River in 1989, Dubuque, IA to Louisa Division Mark Twain NWR	16
Table A-2. Concentrations (mg/kg dry weight) of inorganic elements detected in sediments collected from the Mississippi River in 1989, Keithsburg Division Mark Twain NWR to Alexandria, MO	19
Table A-3. Concentrations (mg/kg dry weight) of inorganic elements detected in sediments collected from the Mississippi River in 1989, Gardner Division Mark Twain NWR to Batchtown Division Mark Twain NWR.	22
Table A-4. Concentrations (mg/kg dry weight) of inorganic elements detected in sediments collected from the Mississippi River in 1989, Piasa/Dresser Island to Osbourne Side Channel	25
Table A-5. Concentrations (mg/kg dry weight) of inorganic elements detected in sediments collected from the Mississippi River in 1989, Crystal City, MO to Angelo Towhead	28
Appendix B:	
Table B-1. Concentrations (mg/kg dry weight) of organochlorine compounds detected in sediments collected from the Mississippi River in 1989, Dubuque, IA to Louisa Division Mark Twain NWR	31
Table B-2. Concentrations (mg/kg dry weight) of organochlorine compounds detected in sediments collected from the Mississippi River in 1989, Keithsburg Division Mark Twain NWR to Alexandria, MO.	. 35
Table B-3. Concentrations (mg/kg dry weight) of organochlorine compounds detected in sediments collected from the Mississippi River in 1989, Gardner Division Mark Twain NWR to Batchtown	
Division Mark Twain NWR	39
Table B-4. Concentrations (mg/kg dry weight) of organochlorine compounds detected in sediments collected from the Mississippi River in 1989,	
Piasa/Dresser Island to Osbourne Side Channel	43

Table B-5. Concentrations (mg/kg dry weight) of organochlorine compounds detected in sediments collected from the Mississippi River in 1989,	47
Crystal City, MO to Angelo Towhead	47
Appendix C:	
Table C-1. Concentrations (mg/kg dry weight) of polycyclic aromatic hydrocarbon (PAH's) compounds detected in sediments collected from the Mississippi	
River in 1989, Dubuque, IA to Louisa Division Mark Twain NWR	51
	-
Table C-2. Concentrations (mg/kg dry weight) of polycyclic aromatic hydrocarbon (PAH's) compounds detected in sediments collected from the Mississippi	
River in 1989, Keithsburg Division Mark Twain NWR to Alexandria, MO	54
Table C-3. Concentrations (mg/kg dry weight) of polycyclic aromatic hydrocarbon (PAH's) compounds detected in sediments collected from the Mississippi	
River in 1989, Gardner Division Mark Twain NWR to Batchtown Division Mark Twain NWR	57
Table C-4. Concentrations (mg/kg dry weight) of polycyclic aromatic hydrocarbon (PAH's) compounds detected in sediments collected from the Mississippi River in 1989, Piasa/Dresser Island to Osbourne Side Channel.	60
Table C-5. Concentrations (mg/kg dry weight) of polycyclic aromatic hydrocarbon (PAH's) compounds detected in sediments collected from the Mississippi River in 1989, Piasa/Dresser Island to Osbourne Side	
Channel	63
Appendix D:	
Table D-1. 1989 Mississippi River solid phase sediment and water 96-hour fathead minnow bioassy results (total mortality at 96-hours of exposure).	66
Appendix E:	
Table E-1. Water chemistry data - solid phase sediment and water 96-hour fathead minnow bioassays of sediments collected from the Mississippi River in 1989.	70
111 17074 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	, u

The present study was undertaken to develop baseline data on organic and inorganic contaminants in bed sediments, and toxicological potential in bottom sediments at pre-selected areas of concern along the river. The areas of concern consisted primarily of areas adjacent to the Mark Twain NWR, the Clarence Cannon NWR, other areas of critical importance to federal trustee resources, and selected industrial locations. Specific sampling sites were designated within these areas of concern. Samples collected at each site were partitioned into subsamples upon which a battery of analytical tests were performed: bulk sediment chemical analysis of a range of organic and inorganic parameters, 96-hour fathead minnows bioassays, and Microtox analysis. This paper reports the concentrations of organic and inorganic parameters in bed sediments, the results of fathead minnow bioassays, and the results of the Microtox assays for sediment samples at selected locations throughout the Upper Mississippi River basin.

Study Area

The study area for the present study consists of the mainstem Upper Mississippi River and associated backwaters and side channels, from approximately river mile 579 near Dubuque, Iowa, to approximately river mile 3 near Cairo, Illinois (Figure 1). The study area encompasses the six divisions of the Mark Twain National Wildlife Refuge, and the Clarence Cannon NWR. It also encompasses industrial areas near Dubuque, Iowa; Galena, Illinois; Bettendorf, Iowa; Muscatine, Iowa; Burlington, Iowa; Ft. Madison, Iowa; Keokuk, Iowa; Hannibal, Missouri; Alton, Illinois; East St. Louis, Illinois; Crystal City, Missouri; Chester, Illinois; Grand Tower, Illinois; Cape Girardeau, Missouri; and Cairo, Illinois. These sampling areas are listed by river mile in Table 1, and depicted in Appendix A.

The sampling sites were selected based primarily on information within two major reports, "Contaminants Strategy for the Upper Mississippi River" (1988), and "Contaminants Strategy for Southern Illinois" (1989). These were developed by U.S. Fish and Wildlife Service personnel to identify contaminant concerns in the northern portion of the study area, and the southern portion of the study area, respectively. A strategy-based approach to identifying areas of concern with respect to planning basin-wide studies was utilized because of the wide range of potential problems that may be present within a basin. The strategies were developed in such detail that ranking of identified areas of concern resulted. The highest priority areas of concern were then selected for incorporation as sample locations in the present study.

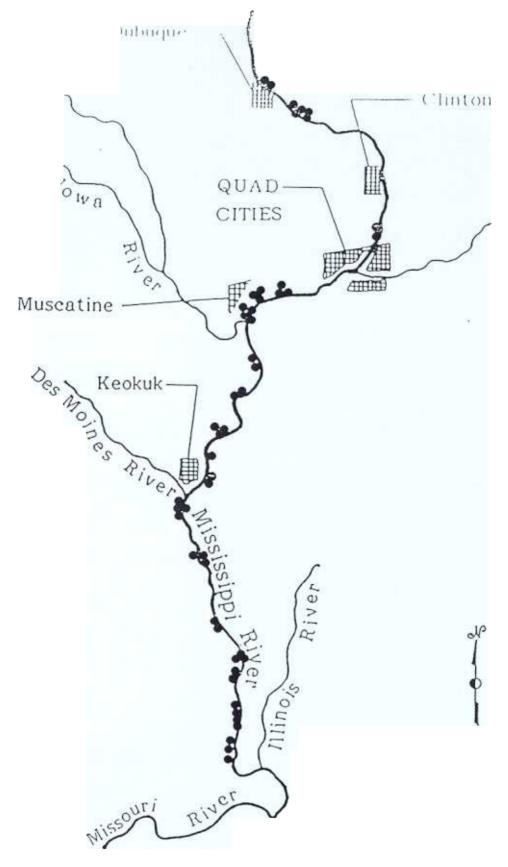


Figure 1. SAMPLING LOCATIONS ON THE UPPER MISSISSIPPI RIVER 1989

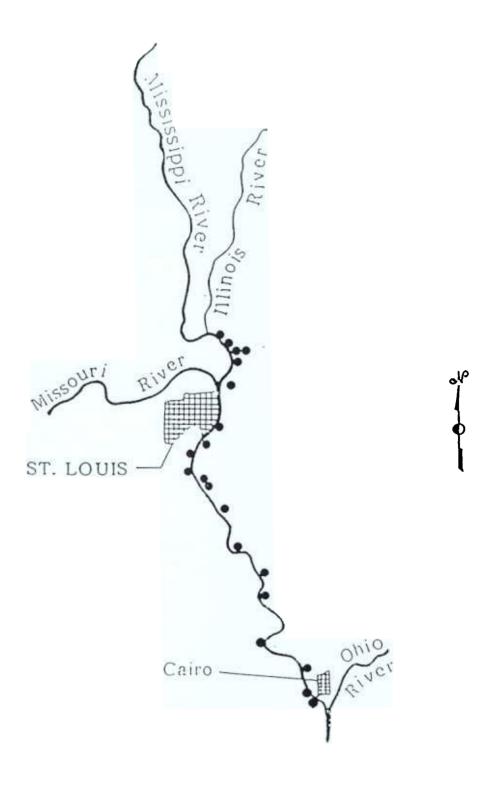


Figure 1. SAMPLING LOCATIONS ON THE UPPER MISSISSIPPI RIVER IN 1989 (cont.)

Sampling sites within and adjacent to refuge boundaries were selected based on discussion and recommendations from individual district refuge managers during the field sampling.

Methods

Sample Collections

Bottom sediment samples were collected at 67 sampling locations on the Upper Mississippi River (Figure 1, Table 1). Twenty-one sites were located on national wildlife refuge lands; forty sites were located primarily adjacent to industrial areas, and approximately ten sites were located within important migratory waterfowl usage areas (areas not associated with other federal lands).

One composite bottom sediment sample, comprised of three to five subsamples, was collected at each site. Sediments were collected primarily with a ponar dredge sampler. At a few of the sites where extremely shallow water conditions prevailed, sediment samples were collected by hand with a stainless steel spoon and holding container. The subsamples were placed in acetone-rinsed stainless steel containers and thoroughly mixed, then proportioned into 500 ml acid-cleaned jars with teflon-lined lids. The sampling equipment was rinsed with acetone between each sample site location. The sample containers were labeled and stored at ambient temperature in the field, then later shipped frozen to the analytical facility.

Chemical Analysis

Chemical residue analysis for the organic compounds was performed by Geochemical and Environmental Research Group at Texas A&M University, College Station, Texas. Sediment samples were analyzed for organochlorine compounds, specifically total chlordane, and total and Arochlor specific PCB's, and polycyclic aromatic hydrocarbons. The sediment samples were extracted using the soxhlet extraction method. Freeze-dried samples were homogenized, and a small portion of the sample was weighed into the extraction apparatus and extracted for 12 hours. The organochlorine fraction was isolated by purification of the extracts by silica/aluminum chromatography. The extracts were then analyzed by gas chromatography. The limit of quantification was 0.50 ppm.

Chemical residue analysis for the inorganic compounds was performed by Environmental Trace Substances Research Center, Columbia, Missouri. Sediment samples were analyzed for approximately 18 metals, using Inductively Coupled Plasma (ICP) analysis. Arsenic, mercury, and selenium concentration determinations were made using atomic absorption spectrocepy.

Table 1. UPPER MISSISSIPPI RIVER 1989 SURVEY SAMPLING SITES - BOTTOM SEDIMENTS (Cross-sectional transect sampling locations are marked***).

Sample Location	River Mile(s)	Sample Number	#Samples Collected
Dubuque, IA			
Detention basin	in pond	1	2
Detention basin	in pond	2	_
Old Lead Mining Area			
Creek	in creek	3	5
Creek	in creek	4	,
Wise Lake (N end)	562.5 L	5	
Wise Lake (Mid sect.)	561.0 L	J .	6
Wise Lake (S end)	560.0 L	7	J
Bettendorf, IA			
ALCOA	489 R	8	•
ALCOA/downstream	488 R	9	2
Muscatine, IA			
Monsanto Corp.	449.9 R	10	2
Monsanto/upstream	450.3 R	10 11	3
Monsanto/downstream	449.3 R	12	
Big Timber Division Mark Twain NWR	446.5-443		
Big Denny Pond	on refuge	13	3
Little Denny Pond	on refuge	14	3
Round Pond	on refuge	15	
ouisa Division Mark Twain NWR	441.5-438 R		
Fox Pond	on refuge	16	4
Goose Pond	on refuge	16 17	4
Prairie Pocket	on refuge	18	
Swarms Pond	on refuge	19	

Table 1 cont. UPPER MISSISSIPPI RIVER 1989 SURVEY SAMPLING SITES - BOTTOM SEDIMENTS (Cross-sectional transect sampling locations are marked***).

Sample Location	River Mile(s)	Sample Number	#Samples Collected
Keithsburg Division Mark Twain NWR	431-428 L		
Upstream side slough	on refuge	20	2
Downstream side slough	on refuge	21	
Burlington, IA			
General Location General Location	403 R 401 R	22 23	2
Ft. Madison, IA			
Lead Is. (N end) General Location Devils Creek	387 R 381 R 378 R	24 25 26	3
George Arthur Refuge (IDOC)	:		
General location	374.5	27	1
Keokuk, IA			
General Location General Location	365 R 363 R	28 29	2
Alexandria, MO	357.0-353.0 R		
Gregory Landing (Grey Chute)	357.0 R	30	4
Gregory Landing (Fox River)		31	
Gregory Landing (Willow Lake)		32	
Gregory Landing (Nelson Lake)		33	

Table 1 cont. UPPER MISSISSIPPI RIVER 1989 SURVEY SAMPLING SITES - BOTTOM SEDIMENTS (Cross-sectional transect sampling locations are marked***).

Sample Location	River Mile(s)	Sample Number	#Samples Collected
Gardner Division Mark Twain NWR	340-332.5 L		
Side slough/ upstream	on refuge	34	3
Side slough/ mid sect.	on refuge	35	
Side slough/ downstream	on refuge	36	
Hannibal, MO			
American Cyanamid Co. /downstream	319.7 R	37	2
Bay de Charles (where ditch enters bay)	in bay	38	
Delair Division Mark Twain NWR	281.5-277.5 L		
N. backwater area	on refuge	39	4
Overflow pond	280.5 L	40	
Swan Lake	on refuge	41	
Hercules Inc. Hercules Inc. /downstream	281 R 280.5 R	42 43	
Clarence Cannon NWF	R 263.5-261.0 R		
Western section		44	4
Southern section		45	
Eastern section		46	
Side slough		47	

Sample Location	River Mile(s)	Sample Number	#Samples Collected
Batchtown Division Mark Twain NWR	251.5-246.0		
Upper Pool Middle Pool Lower Pool		48 49 50	3
Piasa Harbor/ Dresser Island		51	1
Alton, IL			
Jefferson Smurfit, Inc.	201.4 L	52	1
Wood River, IL			
Wood River STP Shell Oil Co.	197.9 L 197.3 L	53 54	2
Hartford, IL			
Clark Oil Co.	196.9 L	55	1
Granite City, IL			
Granite City STP/ Chain-of-Rocks Canal		56	1
East St. Louis, IL			
American Bottoms STP	178.0 L	57	1
St. Louis/ East St. Louis South	168.7	58	1
Meramec River	160.0	59	1
Herculaneum, MO			
Doe Run Herculaneum	152.0 R	60	

Table 1 cont. UPPER MISSISSIPPI RIVER 1989 SURVEY SAMPLING SITES - BOTTOM SEDIMENTS (cross sectional transect sampling locations are marked***).

Sample Location	River Mile(s)	Sample Number	#Samples Collected
Osbourne Side Channel	146.5 L	61	1
Crystal City, MO			
La Rouche Chemical Co.	145.O R	62	1
Establishment Island			
(vicinity)	132.0	63	1
St. Genevieve Island (vicinity)	122.0	64	1
Liberty Island (vicinity)	103.0	65	1
Big Muddy/ Grand Tower Island (vicinity)	72.0 L	66	1
Cape Girardeau, MO (vicinity)	49.5 R	67	1
Thebes, IL			
Ilada Energy	46.5 L	68	1
Brown's Bar	25.0	69	1
Angelo Towhead	3.0 L	70	1

determinations were made using atomic absorption spectrocepy.

Toxicity Tests

Bioassays were performed on sediment samples by the University of Iowa - Hygienics Laboratory in Des Moines, Iowa. Larval fathead minnow 96-hour bioassays were conducted on sub-samples from each The standard U.S. Environmental Protection Agency (U.S.EPA) larval fathead minnow technique was employed. One part sediment was mixed with three parts water and allowed to settle for 24 to 48 hours. The pH and oxygen in the test solution were adjusted prior to introduction of test organisms. The organisms (20 to 25 in number) were exposed to the test containers. organisms were removed from the test containers at 24-hour intervals, and their numbers were recorded. A water sample was taken prior to introduction of the test organisms and analyzed for the following parameters: total ammonia, nitrate nitrogen, nitrite nitrogen, organic nitrogen, pH and temperature. The percentage un-ionized ammonia concentrations were calculated from these data.

Results and Discussion

<u>Sediment - Inorganics</u>

The composited sediment samples were analyzed individually for 21 inorganic parameters. The results of the chemical analyses for the inorganics are presented in Appendix A. The concentrations of many of the inorganics did not vary significantly. However, concentrations of some inorganics showed a very wide range at several sampling locations on the Upper Mississippi River. included aluminum, which ranged from 2730.0 mg/kg at Dubuque, Iowa, to 33300.0 mg/kg at Gregory Landing, near Alexandria, Missouri; barium, which ranged from 4.0 mg/kg at Galena, Illinois (old lead mining area), to 329.0 mg/kg at Clarence Cannon NWR; cadmium, which ranged from <0.02 mg/kg at several locations, including the Mark Twain NWR, to 33.0 mg/kg at Herculaneum, Missouri; chromium, which ranged from 8.9 mg/kg on the Mark Twain NWR (Gardner Division), to 68.0 mg/kg at Granite City, Illinois; copper, which ranged from 5.1 mg/kg on the Mark Twain NWR (Gardner Division), to 1060.0 mg/kg at Herculaneum, Missouri; iron, which ranged from 8000.0 mg/kg at Fort Madison, Iowa, to 89700.0 mg/kg at Herculaneum, Missouri; lead, which ranged from 6.0 mg/kg at Fort Madison, Iowa, to 7720.0 mg/kg at Herculaneum, Missouri; nickel, which ranged from 8.3 mg/kg at Fort Madison, Iowa, to 98.0 mg/kg at Herculaneum, Missouri; silver, which ranged from <2.0 mg/kg at several locations in the study area, to 14.0 mg/kg at Herculaneum, Missouri; strontium, which ranged from 18.2 on the Mark Twain NWR (Louisa Division), mg/kg to 70.6 mg/kg at Herculaneum, Missouri; and zinc, which ranged from 40.7 mg/kg at Fort Madison, Iowa, to 29400.0 mg/kg at Herculaneum, Missouri.

Background concentrations of each of these elements in this portion of the Upper Mississippi River may be represented by the minimum concentrations detected for each element, since many of these minimum concentrations were detected at non-industrial, refuge locations. This indicates that several sites have inorganic contaminants significantly elevated above background, and therefore represent areas of potential concern.

Sediments - Organics

Each composited sediment sample was also analyzed for twenty-five organochlorine compounds. The results of the chemical analyses for the organochlorine compounds are presented in Appendix B. Many of the sampling locations did not exhibit organochlorine contaminants in sediments, as indicated by the "ND" (non-detect) symbols in the data columns. Only two sites at the study area gave any indication of the presence of organochlorine pesticide contaminants in sediments at all. The first site was at Crystal City, Missouri, which indicated polychlorinated biphenyl (PCB) contaminants in bed sediments, where Arochlor 1254 was detected at 1.12 mg/kg, and Arochlor 1260 was detected at 0.22 mg/kg. Another site at the lower end of the study area, Angelo Towhead, which is near Cairo, Illinois, indicated DDE and DDD contaminants present in bed sediments. At Angelo Towhead, o,p'DDE was detected at 0.13 mg/kg; p,p'DDE was detected at 0.35 mg/kg; o,p'DDD was detected at 0.29 mg/kg; and p,p'DDD was detected at 0.65 mg/kg.

Because organochlorine pesticides are man-made compounds, a typically clean environment would contain no detectable concentrations of organochlorines. However, for the few sites that did show some contamination by organochlorines in the present study, the concentrations detected were not indicative of a significant bed sediment contamination problem.

Each composited sediment sample was also analyzed for fourteen polynuclear aromatic hydrocarbon (PAH's) compounds, and oil and grease. The results of the chemical analysis for the polynuclear aromatic hydrocarbons, and oil and grease, are presented in Appendix C. The concentrations of most of the PAH's at many of the sampling sites did not vary significantly. However, concentrations at selected locations did show a wider range than might be anticipated. These particular compounds were phenanthrene, which ranged from non-detectable at several sites, to 2.6 mg/kg at Granite City, Illinois; fluoranthrene, which ranged from non-detectable at several sites, to 2.6 mg/kg at Granite City, Illinois; pyrene, which ranged from non-detectable at several sites, to 1.83 mg/kg at Dubuque, Iowa; and chrysene, which ranged from non-detectable at several sites, to 1.20 mg/kg at Granite City, Illinois. Oil and grease concentrations ranged from non-detectable at a few sites, to 5378 at Dubuque, Iowa.

Because PAH's are considered to be naturally occurring compounds, as well as due to anthropogenic sources, there might be some expectation of background concentrations present in the sediment samples collected from the Upper Mississippi River study area. However, several locations, particularly non-industrialized locations (with a few exceptions) did not exhibit any detectable concentrations of PAH's. Therefore background concentrations of PAH's in the Upper Mississippi River study area are anticipated to be below detection. PAH's appear to be a significant problem at point sources on the Upper Mississippi River.

Bioassay

Sediment exposure bioassays were conducted with composited sediment samples with larval fathead minnows, using a solid-phase sediment and water beaker test technique. The results of the 96-hour fathead minnow bioassays are presented in Appendix D. Water quality parameters were measured for the bioassays conducted for each sediment sample. The water quality parameters measured are presented in Appendix E.

Limitations

There are some additional considerations with regards to sample collection and handling procedures that should at least be acknowledged. First of all, although composited samples were collected at each sampling location, the area in which the subsamples were collected generally did not exceed 30 feet in Therefore, any significantly widespread areas of bed diameter. sediment contamination cannot be predicted from these data. Secondly, with regards to sample handling, recent studies indicate that freezing sediment samples may alter the form of some chemical compounds, particularly polynuclear aromatic hydrocarbons, and some organochlorine compounds. This alteration due to freezing (and subsequent thawing) may have the effect of depressing contaminant concentrations actually measured in a sediment sample. Thus the concentrations listed above in the preceeding tables may actually underestimate concentrations of certain contaminants at many of the sampling sites. Another potential concern is the sample holding time for the samples collected in the present study prior to extraction for analysis. Most samples were held frozen for approximately 6 months, prior to extraction and analysis. Such a lengthy time is generally acceptable for inorganics, but unacceptable for organics.

Summary

Baseline data on inorganic and organic contaminants was developed during the present study. The sediment and water exposure bioassays characterized certain sampling locations as being acutely toxic to aquatic organisms (Table 2). At the specific sampling locations where sediment contaminants were elevated above background, or sediments were significantly toxic to fathead minnows, there is a potential for acute (and chronic) toxicity of sediments to other aquatic organisms, as well as bioaccumulation to other aquatic species, for contaminants known to have the potential to bioaccumulate (Table 3).

It is recommended that additional studies be considered in several areas in the Upper Mississippi River basin to further define the sediment contamination problems suggested by elevated contaminants and/or significant toxicity to aquatic species.

Table 2. A summary of locations on the Upper Mississippi River where sediment toxicity resulted in 50% or greater larval fathead minnow mortality in a 96-hour bioassay (from Appendix D).

River <u>Mile</u>	Location	Contaminants Present
580.7	Dubuque, IA detention basin	Copper, Lead, Zinc, PAHs
561.0	Wise Lake, IL	Metals
403.0	Burlington, IA	Unknown (Ammonia suspected)
381.0	Ft. Madison, IA	Unknown (Ammonia suspected)
357.0	Gregory Landing, MO	Unknown (Ammonia suspected)
340.0	Gardner Division, Mark Twain NWR	Unknown (Ammonia suspected)
178.0	American Bottoms, East St.Louis, IL	Metals, Unknown
80	East St. Louis South, IL	Unknown

Table 3: Summary of the range of metal concentrations sampled, and elevated concentrations, with locations (from Appendix A).

Inorganic Chemical Analyte	Lowest Level Sampled (mg/kg)	Location	Highest Level Sampled (mg/kg)	Location	Elevated Levels (mg/kg)	Location
Aluminum	2730.0	Dubuque	33300.0	Gregory Ld		
Barium	4.0	Galena	329.0	Clar. Cn		
Cadmium	<0.02	Mk Twn NWR	33.0	Herculan.	32.0	Osbourne S.C.
Chromium 8.9		Gardner Div, NWR	68.0	Granite City		
Copper 5.1		Gardner Div, NWR	1060.0	Herculan., MO	1030.0	Osbourn S.C.
Iron	Iron 8000.0		89700.0	Herculan.		
Lead	6.0	Ft.Madison	7720.0	Herculan.	7590.0 290.9	Osbourn S.C. Am. Bttms
Nickel	8.3	Ft.Madison	98.0	Herculan.	92.0	Osbourn S.C.
Silver	<2.0	several	14.0	Herculan.		
Strontium	18.2	Louisa Div	70.6	Herculan.		
Zinc 40.7		Ft.Madison	29400.0	Herculan.	28800.0 804.0	Osbourn S.C. Galena

Appendix A

Tables A-1 through A-5

. eletrove lag_i

Table A-1. Concentrations (mg/kg dry weight) of inorganic elements detected in sediments collected from the Mississippi River in 1989, Dubuque, IA to Louisa Division Mark Twein MuR.

Sample Location	River Mile(s)	Sample Number	Sample Weight	Percent Moisture	AL	As	Ba	Be	В	Cd	Cr
Dubuque, IA		- 1 - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	A STATE OF THE STA	enge a mangang ang ang darif dan manan dalah at mili mili mahan	A COMMUNICATION OF THE STATE OF	101100-20-0-2	447 79 19 19 Western	The Late Control of the Series			Same and the second of the sec
Detention basin Detention basin	in pond in pond	1/1a 2/1b	875.0 769.8	20.9 30.6	2730.0 4530.0	2.9 2.6	53.4 81.2	0.1 0.1	⊘. 0 3.0	0.5 1.2	12.0 14.0
Old Lead Mining Area											
Creek Creek Wise Lake (N end) Wise Lake (Mid sect.) Wise Lake (S end)	in creek in creek 562.5 L 561.0 L 560.0 L	3/2a 4/2b 5/2d 6/2e 7/2f	795.2 843.8 669.3	53.3 39.3 55.8	12800.0 6970.0 11100.0	5.8 2.8 5.6	4.0 84.3 156.0	0.47 0.2 0.67	4.0 <2.0 <2.0	1.6 0.4 0.97	17.0 11.0 21.0
Big Timber Division Mark Twein NGR	446.5-443										
Big Denny Pond Little Denny Pond Round Pond	on refuge on refuge on refuge	13/5a 14/5b 15/5c	732.8 684.6 842.1	51.0 45.1 54.8	16500.0 32700.0 16000.0	5.0 3.4 3.8	182.0 257.0 167.0	0.60 1.2 0.67	4.0 11.0 4.0	0.4 0.4 0.4	24.0 26 23.0
Louise Division Mark Twein MWR	441.5-438 R										
Fox Pond Goose Pond Prairie Pocket Swarms Pond	on refuge on refuge on refuge on refuge	16/6a 17/6b 18/6c 19/6d	565.0 388.3 714.4 641.8	57.6 43.7 58.1 55.8	16900.0 22000.0 7990.0 16300.0	3.2 3.6 5.6 3.3	170.0 222.0 129.0 161.0	0.66 0.83 0.39 0.88	4.0 5.0 3.0 <2.0	0.4 <0.3 <0.3 0.4	25.0 27.0 12.0 24.0

Table A-1 continued. Concentrations (mg/kg dry weight) of inorganic elements detected in sediments collected from the Mississippi River in 1989.

Sample Location	River Hile(s)	Sample Number	Cu	Fe	Pb	Mg	Mn	Hg	No
Dubuque, IA									
Detention basin	in pond	1/1a	16.0	9240.0	140.0	51800.0	310.0	0.084	<2.0
Detention basin	in pond	2/1b	54.8	10100.0	140.0	16200.0	208.0	0.11	<2.0
Old Lead Mining Area									
Creek	in cr ee k	3/2a							
Creek	in creek	4/2b							
Wise Lake (N end)	562.5 L	5/2d	16.0	19200.0	110.0	595 0.0	587.0	0.062	<3.0
Wise Lake (Mid sect.)	561.0 L	6/2e	7.8	9880.0	38.0	10300.0	471.0	0.04	<2.0
Wise Lake (S end)	560.0 L	7/2f	18.0	17500.0	88.0	8350. 0	729.0	0.070	<2.0
lig Timber Division Mark Twain NWR	446.5-443								
Big Denny Pond	on refuge	13/5a	17.0	21700.0	21.0	5220.0	1010.0	0.062	⋖3.0
Little Denny Pond	on refuge	14/5b	22.0	29800.0	25.0	6820.0	787.0	0.094	₹3.0
Round Pond	on refuge	15/5c	20.0	22600.0	21.0	4720.0	660.0	0.085	₹3.0
ouise Division Mark Twain NUR	441.5-438 R								
Fox Pand	on refuge	16/6 e	16.0	22900.0	10.0	2960.0	971.0	0.05	<3.0
Goose Pond	on refuge	17/6b	21.0	27600.0	21.0	4790.0	1190.0	0.062	<3.0
Prairie Pocket	on refuge	18/6c	9.4	19500.0	15.0	2710.0	1600.0	0.05	<3.0
Swarms Pond	on refuge	19/6d	18.0	23200.0	19.0	3550.0	1300.0	0.066	<5.0

Table A-1 continued. Concentrations (mg/kg dry weight) of inorganic elements detected in sediments collected from the Mississippi River in 1989.

Sample Location	River Hile(s)	Sample Number	wi	Se	Ag	Sr	Tl	٧	2n
Dubuque, IA								-	
Detention basin Detention basin	in pond in pond	1/1a 2/1b	9.6 14.0	0.2 1.3	<2.0 <2.0	34.5 19.3	<4.0 <4.0	8.0 11.0	1 83.0 229.0
Old Lead Mining Area									
Creek Creek Wise Lake (N end) Wise Lake (Mid sect.) Wise Lake (S end)	in creek in creek 562.5 L 561.0 L 560.0 L	3/2e 4/2b 5/2d 6/2e 7/2f	19.0 10.0 19.0	0.47 0.2 0.62	<2.0 <2.0 <2.0	28.0 25.8 31.9	<4.0 <4.0 <4.0	24.0 16.0 19.0	804.0 215.0 521.0
Big Timber Division Mark Twein MAR	446.5-443								
Big Denny Pond Little Denny Pond Round Pond	on refuge on refuge on refuge	13/5a 14/5b 15/5c	20.0 27.0 22.0	0.43 0.60 0.53	<2.0 <2.0 <2.0	28.0 40.6 24.3	<4.0 <5.0 <4.0	29.0 49.1 28.0	83.2 106.0 93.0
Louise Division Mark Twein MWR	441.5-438 R								
Fox Pond Goose Pond Prairie Pocket Swarms Pond	on refuge on refuge on refuge on refuge	16/6a 17/6b 18/6c 19/6d	17.0 23.0 16.0 19.0	0.36 0.51 0.42 0.3	<2.0 <2.0 <2.0 <2.0	23.3 36.0 18.2 24.0	<4.0 <4.0 <4.0 <4.0	31.0 35.0 21.0 23.0	69.8 86.3 44.4 65.5

Table A-2. Concentrations (mg/kg dry weight) of inorganic elements detected in sediments collected from the Mississippi River in 1989, Keithsburg Division Mark Twain NWR to Alexandria, MO.

Sample Location	River Mile(s)	Sample Number	Sample Weight	Percent Moisture	AL	As	8a	Be	В	Cd	Cr
Keithsburg Division Mark Twain MWR	431-428 L										
Upstream side slough	on refuge	20/7a	657.4	54.5	12000.0	3.2	102.0	0.56	5.0	0.4	28.0
Downstream side slough	on refuge	21/7b	571.3	69.5	24700.0	5.8	252.0	0.91	6.0	0.5	29.0
Burlington, IA											
General Location General Location Ft. Madison, IA	403 R 401 R	22/8a 23/8b	694.0 669.2	55.3 56.3	13900.0 14000.0	4.6 3.3	180.0 180.0	0.59 0.76	4.0 <2.0	0.4 0.4	19.0 27.0
Lead Is. (N end) General Location	387 R 381 R	24/9a 25/9b	765.4	30.6	10800.0	2.8	120.0	0.50	3.0	<0.3	14.0
Devils Creek	378 R	26/9c	700.3	33.1	6990.0	2.0	94.9	0.34	3.0	<0.3	9.5
Alexandria, MD	357.0-353.0 R										
Gregory Landing (Grey Chute)	357.0 R	30/MR-47	752.1	51.2	17600.0	7.3	254.0	0.78	4.0	⋖0.2	22.0
Gregory Landing (Fox River)		31/MR-48	717.3	41.1	16300.0	4.3	175.0	0.60	3.0	<0.2	18.0
Gregory Landing (Willow Lake)		32/MR-49	403.0	33.2	29900.0	4.9	300.0	1.2	5.0	<0.2	31.0
Gregory Landing (Nelson Lake)		33/MR-50	796.4	52.6	33300.0	4.5	317.0	1.3	6.0	<0.2	35.0

Table A-2 continued. Concentrations (mg/kg dry weight) of inorganic elements detected in sediments collected from the Mississippi River in 1989.

Sample Location	River Mile(s)	Sample Number	Cu	Fe	Pb	Mg	Mn	Hg	Мо
Y-3-b-b			- Allendar State Control					ng	
Keithsburg Division Mark Twein MAR	431-428 L								
Upstream side	on refuge	20/7a	14.0	17500.0	10.0	2910.0	569.0	0.04	<2.0
slough Downstream side	on refuge	21/7b	23.0	35300.0	24.0	5290.0	2730.0		
slough	_	,		33300.0	24.0	3290.0	2/30.0	0.074	<4.0
Burlington, IA									
General Location	403 R	22/8a	17.0	18300.0	29.0	4380.0	1060.0	0.058	-2.0
General Location	401 R	23/8b	17.0	19300.0	19.0	4940.0	1230.0	0.058	<2.0 <3.0
Ft. Medison, IA									
Lead Is. (N end)	387 R	24/9a	9.0	13300.0	9.0	2540.0	527.0	0.04	<2.0
General Location Devils Creek	381 R 378 R	25/9b 26/9c	7.0	9000 0					
		20/90	7.0	8000.0	6.0	1890.0	317.0	0.03	<2.0
Nlexandria, MO	357.0-353.0 R								
Gregory Landing (Grey Chute)	357.0 R	30/MR-47	17.0	25900.0	10.0	3890.0	995.0	0.04	<3.0
Gregory Landing (Fox River)		31/MR-48	13.0	18100.0	8.0	2380.0	653.0	0.03	€.0
Gregory Landing (Willow Lake)		32/MR-49	25.0	31300.0	16.0	4020.0	496.0	0.069	<4.0
Gregory Landing (Nelson Lake)		33/MR-50	25.7	33700.0	16.0	4590.0	641.0	0.062	<4.0

Table A-2 continued. Concentrations (mg/kg dry weight) of inorganic elements detected in sediments collected from the Mississippi River in 1989.

Sample Location	River Mile(s)	Sample Number	Ni	Se	Ag	\$r	TL	٧	Zn
Keithsburg Division Mark Twein MAR	431-428 L								
Upstream side	on refuge	20/7a	19.0	1.0	<2.0	21.1	<4.0	29.0	91.5
Downstream side slough	on refuge	21/7b	26.0	0.78	3.0	37.2	<4.0	36.0	05.0
Burlington, IA									
General Location	403 R	22/8a	17.0	0.57	<2.0	32.3	⋖4.0	24.0	76.7
General Location	401 R	23/8b	19.0	0.40	<2.0	31.1	<4.0	20.0	99.7
Ft. Madison, IA									
Lead Is. (N end) General Location	387 R 381 R	24/9a 25/9b	14.0	0.2	<2.0	18.3	<4.0	22.0	40.7
Devils Creek	378 R	26/9c	8.3	0.2	<2.0	21.6	<4.0	14.0	27.0
Alexandria, MO	357.0-353.0 R	1							
Gregory Landing (Grey Chute)	357.0 R	30/MR-47	23.3	0.76	3.0	44.9	<4.0	32.0	67.4
Gregory Landing (Fox River)		31/MR-48	17.0	0.44	⊘. 0	26.0	4.0	27.0	42.9
Gregory Landing (Willow Lake)		32/MR-49	31.0	0.54	3.0	37.4	<4.0	43.0	86.2
Gregory Landing (Nelson Lake)		33/MR-50	30.0	0.55	3.0	1.4	<4.0	45.9	88.9

Table A-3. Concentrations (mg/kg dry weight) of inorganic elements detected in sediments collected from the Mississippi River in 1989, Gardner Division Mark Twain NMR to Batchtown Division Mark Twain NMR.

Sample Location	River Mile(s)	Sample Number	Sample Weight	Percent Moisture	Al	As	Ba	Ве	В	Cd	Cr
Gardner Division Mark Twain NUR	340-332.5 L										
Side slough/ upstream	on refuge	34/12a	709.6	44.0	9980.0	2.5	125.0	0.50	3.0	<0.3	14.0
Side slough/ mid sect.	on refuge	35/12b	808.7	31.7	5850.0	.6	66.6	0.1	<2.0	<0.3	8.9
Side slough/ downstream	on refuge	36/12c	786.7	34.7	8190.0	2.0	88.1	0.2	2.0	0.3	11.0
Delair Division Mark Twain NUR	281.5-277.5 L										
N. backwater area Overflow pond Swan Lake Hercules Inc. Hercules Inc. /downstream	on refuge 280.5 L on refuge 281 R 280.5 R	39/MR-16 40/MR-17 41/MR-18 42/MR-14 43/MR-15	820.8 910.3 797.7 856.7 877.9	50.8 48.2 40.6 49.9 40.5	13000.0 28000.0 9430.0 22000.0 13000.0	2.8 1.6 1.5 5.6 2.7	152.0 203.0 136.0 174.0 131.0	0.54 0.85 0.45 0.66 0.39	3.0 7.8 <2.0 6.0 2.0	<0.2 <0.2 <0.2 0.4 <0.3	18.0 19.0 14.0 26.0 17.0
Clarence Cannon NWR	263.5-261.0 R										
Western section Southern section Eastern section Side slough		44/MR-19 45/MR-20 46/MR-21 47/MR-22	821.3 668.8 830.9 772.1	46.3 60.2 46.5 51.9	28200.0 46900.0 31500.0 19100.0	1.8 3.3 2.4 2.2	242.0 329.0 259.0 194.0	1.3 1.4 1.2 0.85	4.0 7.5 4.0 4.0	<0.2 0.2 0.3 <0.2	30.0 43.0 36.0 22.0
Batchtown Division Mark Twein NWR	251.5-246.0										
Upper Pool Middle Pool Lower Pool		48/MR-23 49/MR-24 50/MR-25	700.7 815.1 787.5	54.7 54.5 53.3	25200.0 22800.0 22300.0	5.5 4.7 3.5	251.0 255.0 226.0	1.0 1.1 0.95	5.0 5.0 3.0	<0.2 <0.4 <0.2	29.0 28.0 27.0

Table A-3 continued. Concentrations (mg/kg dry weight) of inorganic elements detected in sediments collected from the Mississippi River in 1989.

Sample Location	River Mile(s)	Sample Number	Cu	Fe	Pb	Mg	Mn	Hg	Мо
Gardner Division Mark Twein MAR	340-332.5 L								
Side slough/ upstream	on refuge	34/12a	9.2	13200.0	10.0	2910.0	729.0	0.04	<2.0
Side slough/ mid sect.	on refuge	35/12b	5.1	8440.0	7.0	1840.0	389.0	<0.02	<2.0
Side slough/ downstream	on refuge	36/12c	6.6	10300.0	7.0	2300.0	426.0	<0.02	<2.0
Delair Division Mark Twein NUR	281.5-277.5 L								
N. backwater area Overflow pond Swan Lake Hercules Inc. Hercules Inc. /downstream	on refuge 280.5 L on refuge 281 R 280.5 R	39/MR-16 40/MR-17 41/MR-18 42/MR-14 43/MR-15	12.0 15.0 8.8 17.0 9.7	16000.0 25400.0 17600.0 20600.0 14100.0	10.0 10.0 9.0 17.0 10.0	3690.0 3830.0 1650.0 3260.0 2660.0	641.0 622.0 1240.0 595.0 625.0	0.02 0.02 0.02 0.03 0.02	<2.0 <3.0 <2.0 <3.0 <2.0
Clarence Cannon MAR	263.5-261.0 R								
Western section Southern section Eastern section Side slough		44/MR-19 45/MR-20 46/MR-21 47/MR-22	23.0 27.8 24.0 16.0	26200.0 34700.0 27300.0 21200.0	16.0 20.0 17.0 15.0	4230.0 5600.0 3680.0 2710.0	412.0 677.0 560.0 466.0	0.02 0.03 0.03 0.02	<3.0 <4.0 <3.0 <3.0
Batchtown Division Mark Twain NWR	251.5-246.0								
Upper Pool Middle Pool Lower Pool		48/MR-23 49/MR-24 50/MR-25	22.0 25.0 20.0	32200.0 31300.0 27800.0	20.0 22.0 18.0	5050.0 5260.0 4510.0	1800.0 1360.0 1150.0	0.062 0.05 0.03	<4.0 <4.0 <3.0

Table A-3 continued. Concentrations (mg/kg dry weight) of inorganic elements detected in sediments collected from the Mississippi River in 1989.

Sample Location	River Hile(s)	Sample Number	Ni	Se	A.	6 -		٧	·
					Ag	Sr	Tl		Zn
Gardner Division Mark Twein MAR	340-332.5 L								
Side slough/ upstream	on refuge	34/12a	13.0	0.3	⊘. 0	27.6	<4.0	19.0	49.7
Side slough/ mid sect.	on refuge	35/12b	8.7	0.2	<2.0	20.1	<4.0	13.0	28.5
Side slough/ downstream	on refuge	36/12c	11.0	0.2	<2.0	23.6	<4.0	16.0	35.7
Delair Division Mark Twein MWR	281.5-277.5 L								
N. backwater area Overflow pond Swan Lake Hercules Inc. Hercules Inc. /downstream	on refuge 280.5 L on refuge 281 R 280.5 R	39/MR-16 40/MR-17 41/MR-18 42/MR-14 43/MR-15	16.0 19.0 11.0 20.0 14.0	0.5 0.2 0.2 0.3 0.2	<2.0 3.0 <2.0 <2.0 <2.0	30.2 37.8 28.5 33.4 27.3	4.0 4.0 4.0 4.0 4.0	23.0 41.1 16.0 37.0 24.0	57.3 65.7 34.1 88.9 46.6
Clarence Cannon MAR	263.5-261.0 R								
Western section Southern section Eastern section Side slough		44/MR-19 45/MR-20 46/MR-21 47/MR-22	25.0 33.0 26.0 22.0	0.4 0.67 0.48 0.53	2.0 3.0 2.0 <2.0	33.2 51.5 41.7 25.2	<4.0 <4.0 <4.0 <4.0	35.0 61.8 38.7 31.0	86.5 13.0 04.0 68.1
Batchtown Division Mark Twein WWR	251.5-246.0								
Upper Pool Middle Pool Lower Pool		48/MR-23 49/MR-24 50/MR-25	28.0 28.0 25.0	0.46 0.54 0.46	3.0 3.0 2.0	34.9 31.6 30.5	<4.0 <4.0 <4.0	39.0 37.0 35.0	94.7 99.6 88.5

Table A-4. Concentrations (mg/kg dry weight) of inorganic elements detected in sediments collected from the Mississippi River in 1989, Piasa Harbor/Dresser Island to Osbourne Side Channel.

Sample Location	River Mile(s)	Sample Number	Sample Weight	Percent Moisture	Al	As	Ba	Be	B	Cd	Cr
Piasa Harbor/ Dresser Island		We show that			alian na mangga sa an	en graves in grave in the grave of the second	Superioratives experience		- व्याप्त्रस्थात्रस्थात्रस्थाः व्याप	tie gewone Constitution was an architecture of the Constitution of	
	209.0	51/MR-44	925.0	46.5	14000.0	3.1	144.0	0.53	4.0	<0.2	19.0
Alton, IL											
Jefferson Smurfit, Inc.	201.4 L	52/MR-26	921.7	27.0	9120.0	4.5	123.0	0.46	3.0	<0.2	13.0
Wood River, IL											
Wood River STP Shell Oil Co.	197.9 L 197.3 L	53/MR-27 54/MR-28	1093.7 1065.0	30.6 37.9	6930.0 5760.0	2.3 2.2	81.2 81.9	0.36 0.31	2.0 3.0	<0.2 <0.2	12.0 19.0
Martford, IL											
Clark Oil Co.	196.9 L	55/MR-29	919.9	30.5	10700.0	6.8	226.0	0.58	3.0	0.4	25.0
Granite City, IL											
Granite City STP/ Chain-of-Rocks Canal		56/MR-30	994.7	31.3	6600.0	5.4	204.0	0.3	3.0	1.3	68.0
East St. Louis, IL											
American Bottoms STP	178.0 L	57/MR-31	906.3	25.1	7260.0	11.5	210.0	0.3	3.0	0.8	12.0
St. Louis/											
East St. Louis South	168.7	58/MR-32	906.0	43.9	15500.0	5.4	240.0	0.60	4.0	0.4	19.0
Meramec River	440.0	****									
	160.0	59/MR-33	896.2	31.7	16100.0	4.9	238.0	0.63	4.0	0.7	20.0
Herculaneum, MO											
Doe Run Herculaneum	152.0 R	60/MR-34	1403.7	19.4	11100.0	15.3	212.0	1.2	9.0	33.0	25.0
Osbourne Side Channel											
	146.5 L	61/MR-35	549.3	40.4	11000.0	5.2	213.0	1.2	.7	2.0	25.0

Table A-4 continued. Concentrations (mg/kg dry weight) of inorganic elements detected in sediments collected from the Mississippi River in 1989.

Sample Location	River Mile(s)	Sample Number	Cu .	Fe	РЪ	Ng	Mn	Hg	Мо
Piasa Narbor/ Dresser Island	209.0	51/MR44	14.0	17400	10.0	3860.0	650.0	0.04	<2. 0
Alton, IL	20700	# 1,7 m 44		.,,,,,					
Jefferson Smurfit, Inc.	201.4 L	52/MR-26	12.0	15000.0	15.0	2950.0	512.0	0.04	<2.0
Wood River, IL									
Wood River STP Shell Oil Co.	197.9 L 197.3 L	53/MR-27 54/MR-28	11.0 9.6	10500.0 9720.0	16.0 15.0	3430.0 2880.0	419.0 406.0	0.03 0.02	<2.0 <2.0
Martford, IL									
Clark Oil Co.	196.9 L	55/MR-29	48.4	20100.0	43.0	4510.0	921.0	0.44	⋖3.0
Granite City, IL									
Granite City STP/ Chain-of-Rocks Canel		56/MR-30	84.6	41800.0	140.0	2370.0	351.0	0.18	<4.0
East St. Louis, IL									
American Bottoms STP	178.0 L	57/MR-31	40.5	9740.0	290.0	2580.0	233.0	0.04	<2.0
St. Louis/									
East St. Louis South	168.7	58/MR-32	21.0	19200.0	24.0	4570.0	782.0	0.05	⋖3.0
Meramec River	160.0	59/MR-33	18.0	19000.0	37.0	4590.0	796.0	0.04	⋖3.0
Herculaneum, MO									
Doe Run Herculaneum	152.0 R	60/MR-34	1060.0	89700.0	7720.0	12600.0	589.0	0.03	20.0
Osbourne Side									
Channel	146.5 L	61/MR-35	1030.0	88200.0	7590.0	2500.0	588.0	0.056	20.0

Table A-4 continued. Concentrations (mg/kg dry weight) of inorganic elements detected in sediments collected from the Mississippi River in 1989.

Sample Location	River Mile(s)	Sample Number	Ni	Se	Ag	Sr	τι	٧	Zn
Piasa Harbor/ Dresser Island						I CONTRACTOR	ALL SANCE THE SECTION OF THE SECTION		
Alton, IL	209.0	51/MR-44	18.0	0.44	<2.0	29.3	<4.0	24.0	62.8
Jefferson Smurfit, Inc.	201.4 L	52/MR-26	16.0	0.3	<2.0	21.2	4.0	20.0	52.9
Wood River, IL									
Wood River STP Shell Oil Co.	197.9 L 197.3 L	53/MR-27 54/MR-28	12.0 11.0	0.2 0.2	<2.0 <2.0	22.3 31.4	<4.0 <4.0	15.0 13.0	45.1 38.2
Martford, IL									
Clark Oil Co.	196.9 L	55/MR-29	20.0	0.3	<2.0	49.3	<4.0	25.0	99.7
Granite City, IL									
Granite City STP/ Chain-of-Rocks Canal		56/MR-30	39.0	0.57	4.0	38.4	<4.0	14.0	187.0
East St. Louis, IL									
American Bottoms STP	178.0 L	57/MR-31	13.0	0.3	3.0	32.3	<4.0	16.0	130.0
St. Louis/ East St. Louis South									
	168.7	58/MR-32	23.0	0.44	<2.0	48.7	<4.0	29.0	98.0
Meramec River	160.0	59/MR-33	22.0	0.42	<2.0	40.1	<4.0	29.0	101.0
Herculaneum, MO									
Doe Run Herculaneum	52.0 R	60/MR-34	98.0	0.59	14.0	70.6	<4.0	29.0	29400.0
Osbourne Side								2,44	· • • • •
Channel	46.5 L	1/MR-35	92.0	.54	14.0	69.9	<4.0	29.0	28800.0

Table A-5. Concentrations (mg/kg dry weight) of inorganic elements detected in sediments collected from the Mississippi River in 1989, Crystal City, MO to Angelo Towhead.

Sample Location	River Mile(s)	Sample Number	Sample Weight	Percent Moisture	AL	As	Ba	Ве	В	Cd	Cr
Crystal City, MD											-
La Rouche Chemical Co.	145.0 R	62/MR-36	1037.8	24.7	9010.0	4.3	176.0	0.33	3.0	<0.2	27.0
Establishment Island (vicinity)	132.0	63/MR-37	1009.5	40.5	14300.0	4.8	224.0	0.55	4.0	0.5	18.0
St. Genevieve Island							-5.00	•••	4.0	0.5	10.0
(vicinity)	122.0	64/MR-38	769.3	33.7	19000.0	5.9	242.0	0.64	5.0	0.3	22.0
Liberty Island (vicinity)	103.0	65/MR-39	886.7	46.2	23200.0	6.7	247.0	0.86	5.0	0.3	26.0
Big Muddy/ Grand Tower Island											
(vicinity)	72.0 L	66/MR-43	841.0	41.9	17300.0	5.1	218.0	0.72	5.0	<0.2	19.0
Cape Girardeau, MO (vicinity)	49.5 R	67/MR-40	961.9	36.2	11200.0	4.2	197.0	0.44	3.0	<0.2	14.0
Thebes, IL											
Ilada Energy	46.5 L	68/MR-41	919.8	31.8	14900.0	6.1	267.0	0.52	5.0	<0.2	20.0
Brown's Bar	5.0	69/MR-42	798.6	53.0	27700.0	7.2	289.0	0.99	5.0	0.4	30.0
Angelo Towhead	3.0 L	70/MR-45	821.2	47.2	18000.0	5.3	242.0	0.77	5.0	0.3	21.0

Table A-5 continued. Concentrations (mg/kg dry weight) of inorganic elements detected in sediments collected from the Mississippi River in 1989.

Sample Location	River Nile(s)	Sample Number	Qu .	fe	Pb	Ng	Min	Hg	Но
Crystal City, NO									
La Rouche Chemical Co.	145.0 R	62/MR-36	13.0	11500.0	23.0	2510.0	490.0	0.04	<2.0
Establishment Island (vicinity)	132.0	63/MR-37	16.0	17000.0	23.0	4220.0	647.0	0.05	⊘. 0
St. Gensvieve Island (vicinity)	122.0	64/MR-38	17.0	19900.0	20.0	4430.0	743.0	0.073	<3.0
Liberty Island (vicinity)	103.0	65/MR-39	23.0	25200.0	24.0	5260.0	979.0	0.070	⋖3.0
Big Muddy/ Grand Tower Island (vicinity)	72. 0 L	66/MR-43	17.0	20400.0	16.0	4390.0	937.0	0.05	⋖.0
Cape Girardeau, HO (vicinity)	49.5 R	67/MR-40	12.0	14400.0	16.0	3740.0	651.0	0.04	<2.0
Thebes, IL									
Ilada Energy	46.5 L	68/MR-41	14.0	17000.0	14.0	4520.0	585.0	0.057	<2.0
Brown's Ber	5.0	69/MR-42	24.0	28100.0	23.0	6110.0	1200.0	0.063	⋖3.0
Angelo Touhead	3.0 L	70/MR-45	19.0	22300.0	20.0	4760.0	1010.0	0.055	<3.0

Table A-5, continued. Concentrations (mg/kg dry weight) of inorganic elements detected in sediments collected from the Mississippi River in 1989.

Sample Location	River Mile(s)	Sample Number	Ni	Se	Ag	\$r	TL	٧	Zn_
Crystal City, NO									
La Rouche Chemical Co.	145.0 R	62/MR-36	13.0	0.2	<2.0	28.6	≪.0	19.0	83.6
Establishment Island (vicinity)	132.0	63/MR-37	19.0	0.41	⋖.0	43.5	<4.0	27.0	86.1
St. Genevieve Island (vicinity)	122.0	64/MR-38	21.0	0.52	<2.0	52.0	<4.0	32.0	70.8
Liberty Island (vicinity)	103.0	65/MR-39	27.0	0.67	⋖.0	54.3	<4.0	37.6	94.9
Big Muddy/ Grand Tower Island (vicinity)	72.0 L	66/MR-43	23.0	0.49	<2.0	46.3	<4.0	31.0	71.8
Cape Girardosu, MO (vicinity)	49.5 R	67/MR-40	17.0	0.4	<2.0	40.3	<4.0	21.0	54.3
Thebes, IL									
Ilada Energy	46.5 L	68/MR-41	20.0	0.42	⊘. 0	44.1	<4.0	29.0	62.9
Brown's Ber	5.0	69/MR-42	31.0	0.68	3.0	67.6	4.0	44.0	95.2
Angelo Touhead	3.0 L	70/MR-45	25.0	0.45	2.0	47.0	<4.0	33.0	79.9

Appendix B

Tables B-1 through B-5

Table 8-1. Concentrations (mg/kg dry weight) of organochlorine compounds detected in sediments collected from the Mississippi River in 1989, Dubuque, IA to Louisa Division Mark Tumin MUR.

Sample Location	River Mile(s)	Sample Number	Sample Wt.	2Hoisture	нсв	Alpha BHC	Beta BHC	Gamma BHC	Delta BHC	Heptachlor Epoxide
Dubuque, IA										
Detention basin Detention basin	in pond in pond	1/1a 2/1b	911 649	18.0 29.0	ND NO	MD MD	ND ND	ND ND	ND ND	ND ND
Old Lead Mining Area										
Creek Creek Wise Lake (N end) Wise Lake (Mid sect.) Wise Lake (S end)	in creek in creek 562.5 L 561.0 L 560.0 L	3/2e 4/2b 5/2d 6/2e 7/2f	824 783	52.8 36.2 60.6	ND ND ND	ND ND ND	ND MD MD	ND ND ND	ND ND ND	ND ND NO
Big Timber Division Mark Twain MWR	446.5-443									
Big Denny Pond Little Denny Pond Round Pond	on refuge on refuge on refuge	13/5a 14/5b 15/5c	667 740 799	69.4 57.8 60.2	ND ND ND	ND ND ND	ND ND	ND ND ND	ND ND ND	ND ND ND
Louise Division Mark Twein MUR	441.5-438 R									
Fox Pond Goose Pond Prairie Pocket Swarms Pond	on refuge on refuge on refuge on refuge	16/6a 17/6b 18/6c 19/6d	517 726 656 849	56.4 69.2 54.2 63.0	ND ND ND	ND ND ND	ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND

Table B-1 continued. Concentrations (mg/kg dry weight) of organochlorine compounds detected in sediments collected from the Mississippi River in 1989.

Sample Location	River Mile(s)	Sample Number	Oxy- chlordane	Alpha- chlordene	Gamma chlordane	Cis- Monachlor	Trans- Nonachlor	Dieldrin	Endrin	Mirex
Dubuque, IA										
Detention besin Detention besin	in pond	1/1a 2/1b	ND ND							
Old Lead Mining Area										
Creek Creek Wise Lake (N end) Wise Lake (Mid sect.) Wise Lake (S end)	in creek in creek 562.5 L 561.0 L 560.0 L	3/2a 4/2b 5/2d 6/2e 7/2f	ND ND ND	ND ND ND	NC ND ND	ND ND ND	MD ND ND	ND ND ND	ND ND ND	ND ND ND
Big Timber Division Hark Twein NAR	446.5-443									
Big Denny Pond Little Denny Pond Round Pond	on refuge on refuge on refuge	13/5a 14/5b 15/5c	MD ND ND	ND ND ND	ND ND ND	MD MD MD	MD MD MD	ND ND ND	ND ND ND	ND ND ND
Louisa Division Mark Twein NWR	441.5-438 R									
Fox Pond Goose Pond Prairie Pocket Swarms Pond	on refuge on refuge on refuge on refuge	16/6a 17/6b 18/6c 19/6d	MD ND ND ND	ND ND ND ND	NO NO ND ND	ND ND ND ND	MD MD MD MD	ND ND ND ND	ND ND ND ND	ND ND ND ND

Table 8-1 continued. Concentrations (mg/kg dry weight) of organochlorine compounds detected in sediments collected from the Mississippi River in 1989.

Sample Location	River Hiles(s)	Sample Number	o.p100E	p.p'00E	0,p1000	p.p1000	o.p'DDT	p.p'D0T
Dubuque, IA								
Detention besin	in pond	1/1a	ND	MD	MD	ND	ND	ND
Detention basin	in pond	2/1b	ND	ND	ND	ND	ND	ND
Old Lead Mining Area								
Creek	in creek	3/24						
Creek	in cr ee k 562.5 L	4/2b	WA.	NO.	ND	ND	ND	ND
Wise Lake (N end) Wise Lake (Mid sect.)	561.0 L	5/2d 6/2e	ND ND	ND ND	ND	ND	ND ND	ND
Wise Lake (S end)	560.0 L	7/2f	ND	ND	ND	ND	ND	ND
Big Timber Division Hark Twein HUR	446.5-443							
Big Denny Pond	on refuge	13/5a	ND	ND	MD	ND	ND	ND
Little Denny Pond	on refuge	14/5b	ND	MD	ND	MD	ND	ND
Round Pond	on refuge	15/5c	ND	ND	ND	ND	ND	ND
Louisa Division Mark Twain NWR	441.5-438 R							
Fox Pond	on refuge	16/6a	MD	ND	ND	ND	ND	ND
Goose Pond	on refuge	17/6b	ND	ND	ND	ND	ND	ND
Prairie Pocket	on refuge	18/6c	ND	ND	ND	ND	ND	ND
Swarms Pond	on refuge	19/6d	ND	ND	MD	ND	NO	ND

Table B-1 continued. Concentrations (mg/kg dry weight) of organochlorine compounds detected in sediments collected from the Mississippi River in 1989.

Sample Location	River Mile(s)	Sample Number	Arochlor 1242	Arochlor 1248	Arochlor 1254	Arochlor 1260	Toxaphene
Dubuque, IA							
Detention besin Detention besin	in pond in pond	1/1a 2/1b	ND ND	ND ND	ND ND	MD ND	ND ND
Old Leed Mining Area							
Creek Creek Wise Lake (N end) Wise Lake (Nid sect.) Wise Lake (S end)	in creek in creek 562.5 L 561.0 L 560.0 L	3/2a 4/2b 5/2d 6/2e 7/2f	NO ND ND	ND ND ND	NO NO NO	NO ND NO	ND ND ND
Big Timber Division Mark Twein MAR	446.5-443						
Big Denny Pond Little Denny Pond Round Pond	on refuge on refuge on refuge	13/5a 14/5b 15/5c	ND ND ND	ND ND ND	ND ND ND	MO MD NO	ND ND ND
Louise Division Mark Twein MAR	441.5-438 R						
Fox Pond Goose Pond Prairie Pocket Swarms Pond	on refuge on refuge on refuge on refuge	16/6 a 17/6b 18/6c 19/6d	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND NO ND

Table B-2. Concentrations (mg/kg dry weight) of organochlorine compounds detected in sediments collected from the Mississippi River in 1989, Keithsburg Division Mark Twein MAR to Alexandria, MD.

Sample Location	River Mile(s)	Sample Number	Sample Wt.	XM oisture	нсв	Alpha BHC	Beta BHC	Gamma BHC	Delta BHC	Heptachlor Epoxide
Keithsburg Division Mark Twain MWR	431-428 L									
Upstreem side slough	on refuge	20/7a	694	56.8	MD	ND	ND	ND	MD	MD
Downstream side slough	on refuge	21/7b	556	76.0	MD	ND	ND	ND	ND	ND
Burlington, IA										
General Location General Location	403 R 401 R	22/8a 23/8b	700 639	60.4 61.8	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Ft. Madison, IA										
Lead Is. (N end) General Location Devils Creek	387 R 381 R 378 R	24/9a 25/9b 26/9c	800 6 9 6	31.2 31.6	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Alexandria, MO	357.0-353.0 R	!								
Gregory Landing (Grey Chute)	357.0 R	30/MR-47	744	60.6	ND	ND	MD	ND	ND	ND
Gregory Landing (Fox River)		31/MR-48	673	46.4	ND	ND	ND	ND	ND	ND
Gregory Landing (Willow Lake)		32/MR-49	423	31.0	ND	ND	ND	ND	ND	ND
Gregory Landing (Nelson Lake)		33/MR-50	765	57.8	ND	ND	ND	ND	MD	ND

Table B-2 continued. Concentrations (mg/kg dry weight) of organochlorine compounds detected in sediments collected from the Mississippi River in 1989.

Sample Location	River Mile(s)	Sample Number	Oxy- chlordene	Alpha- chlordane	Gamma chlordane	Cis- Nonechior	Trans- Nonachlor	Dieldrin	Endrin	Mirex
Keithaburg Division Mark Twein MWR	431-428 L									
Upstreem side slough	on refuge	20/7a	ND	ND	ND	ND	ND	ND	ND	ND
Downstream side slough	on refuge	21/7b	ND	ND	ND	ND	ND	ND	ND	NO
Burlington, IA										
General Location	403 R	22/8a	MD	ND	ND	ND	ND	ND	ND	MD
General Location	401 R	23/8b	ND	ND	ND	ND	ND	ND	ND	ND
Ft. Medison, IA										
Lead Is. (N end) General Location	387 R 381 R	24/9a 25/9b	ND	ND	ND	ND	ND	ND	ND	ND
Devils Creek	378 R	26/9c	ND	MD	ND	ND	ND	ND	ND	ND
Alexandria, MO	357.0-353.0	R								
Gregory Landing (Grey Chute)	357.0 R	30/MR-47	ND	ND	ND	ND	ND	ND	MD	ND
Gregory Landing (Fox River)		31/MR-48	ND	ND	ND	ND	ND	ND	ND	ND
Gregory Landing		32/MR-49	ND	MO	ND	ND	ND		ND	MD
(Willow Lake) Gregory Landing (Nelson Lake)		53/MR-50	ND	ND	ND	ND	MD		ND	ND

Table 8-2 continued. Concentrations (mg/kg dry weight) of organochlorine compounds detected in sediments collected from the Mississippi River in 1989.

Sample Location	River Miles(s)	Sample Number	0.p100E	p.p'00E	0.000	p,p'000	o.p'DDT	p.p*00T
Keithsburg Division Mark Twein MWR	431-428 L							
Upstreem side slough	on refuge	20/7	MD	ND	ND	NO	ND	ND
Downstream side slough	on refuge	21/7b	MD	MD	MD	MD	ND	ND
Burlington, IA								
General Location General Location	403 R 401 R	22/8 a 23/8b	ND ND	ND ND	ND ND	ND ND	ND ND	ND NO
Ft. Madison, IA								
Lead Is. (N end) General Location Devils Creek	387 R 381 R 378 R	24/9a 25/9b 26/9c	ND ND	ND ND	ND ND	NO NO	ND ND	ND ND
Alexandria, MO	357.0-353.0	R						
Gregory Landing (Grey Chute)	357.0 R	30/MR-47	ND	ND	ND	ND	ND	ND
Gregory Landing (Fox River)		31/MR-48	ND	ND	ND	MD	ND	ND
Gregory Landing (Willow Lake)		32/MR-49	ND	ND	ND	MD	NO	ND
Gregory Landing (Nelson Lake)		33/MR-50	ND	ND	ND	ND	ND	ND

.

Table B-2 continued. Concentrations (mg/kg dry weight) of organochlorine compounds detected in sediments collected from the Mississippi River in 1989.

Sample Location	River Mile(s)	Sample Number	Arachlor 1242	Arochlor 1248	Arochlor 1254	Arochlor 1260	Toxaphene
Keithsburg Division Mark Twein NUR	431-428 L						
Upstreem side slough	on refuge	20/7 a	ND	MD	MD	ND	ND
Downstream side slough	on refuge	21/7b	ND	ND	ND	ND	MD
Burlington, IA							
General Location	403 R	22/8a	MD	ND	ND	ND	MD
General Location	401 R	23/8b	ND	ND	ND	ND	ND
Ft. Medison, IA							
Lead Is. (N end) General Location	387 R 381 R	24/9a 25/9b	MD	MD	ND	ND	ND
Devils Creek	378 R	26/9c	ND	ND	MD	ND	MD
Alexandria, MO	357.0-353.0 F	t					
Gregory Landing (Grey Chute)	357.0 R	30/MR-47	ND	MD	MD	ND	MD
Gregory Landing (Fox River)		31/MR-48	ND	MD	MD	ND	ND
Gregory Landing (Willow Lake)		32/MR-49	ND	ND	ND	ND	ND
Gregory Landing (Nelson Lake)		33/MR-50	ND	ND	ND	ND	ND

Table B-3. Concentrations (mg/kg dry weight) of organochlorine compounds detected in sediments collected from the Mississippi River in 1989, Gardner Division Mark Twain MuR to Batchtown Division Mark Twain MuR.

Sample Location	River Hile(s)	Sample Number	Sample Wt.	M oisture	HC8	Atpha BHC	Beta BHC	Gamma BHC	Delta BHC	Heptachlor Epoxide
Gardner Division Mark Twein NUR	340-332.5 L				an a		and the second seco		.च च द्वा च्याराय तम् च द्वाच्याच्या ज्वासानु । जुलस्य	ann an ann an am an
Side slough/ upstream	on refuge	34/12a	802	49.8	ND	ND	ND	ND	ND	ND
Side slough/ mid sect.	on refuge	35/12b	760	33.4	ND	ND	ND	ND	ND	ND
Side slough/ downstream	on refuge	36/12c	672	31.6	ND	ND	ND	ND	ND	ND
Delair Division Mark Twain NWR	281.5-277.5 L									
N. backwater area Overflow pond Swan Lake Hercules Inc. Hercules Inc. /downstream	on refuge 280.5 L on refuge 281 R 280.5 R	39/MR-16 40/MR-17 41/MR-18 42/MR-14 43/MR-15	766 879 718 826 915	49.8 43.4 41.4 49.6 28.0	ND ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND ND	ND ND ND ND
Clarence Cannon NWR	263.5-261.0 R									
Western section Southern section Eastern section Side slough		44/MR-19 45/MR-20 46/MR-21 47/MR-22	813 752 781 843	44.4 63.6 47.4 50.8	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND
Batchtown Division Mark Twein MAR	251.5-246.0									
Upper Pool Middle Pool Lower Pool		48/MR-23 49/MR-24 50/MR-25		57.6 59.0 59.4			ND ND ND	ND ND ND	ND ND ND	ND ND ND

Table 8-3 continued. Concentrations (mg/kg dry weight) of organochlorine compounds detected in sediments collected from the Mississippi River in 1989.

Sample Location	River Hile(s)	Sample Number	Oxy- chilordene	Alpha- chlordane	Germe chlordene	Cis- Monachlor	Trans- Monachlor	Dieldrin	Endrin	Mirex
	7/0 770 5 /									
Gerdner Division Mark Twein MWR	340-332.5 L									
Side slough/ upstream	on refuge	34/12a	ND	ND	ND	ND	ND	ND	ND	ND
Side slough/ mid sect.	on refuge	35/12b	ND	ND	ND	ND	ND	ND	ND	ND
Side slough/ downstream	on refuge	36/12c	ND	ND	ND	ND	ND	ND	ND	ND
Delair Division Mark Twein MWR	281.5-277.5 L									
N. backwater area	on refuge	39/MR-16	ND	ND	ND	ND	ND	ND	ND	ND
Overflow pond Swan Lake	280.5 L on refuge	40/MR-17 41/MR-18	ND ND	ND ND	ND ND	ND ND	ND ND	ND MD	ND ND	ND ND
Hercules Inc.	281 R	42/MR-14	ND	MD	ND	NO NO	ND ND	ND ND	ND	ND
Hercules Inc. /downstream	280.5 R	43/MR-15	ND	ND	ND	ND	ND	ND	ND	ND
Clarence Cannon MAR	263.5-261.0 R									
Western section		44/MR-19	ND	ND	ND	ND	ND	ND	ND	ND
Southern section		45/MR-20	ND	ND	ND	ND	ND	ND	ND	ND
Eastern section Side slough		46/MR-21 47/MR-22	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Batchtown Division Mark Twein NWR	251.5-246.0									
Upper Pool		48/MR-23			ND	MD				ND
Middle Pool Lower Pool		49/MR-24 50/MR-25			ND ND	ND ND				ND ND

Table B-3 continued. Concentrations (mg/kg dry weight) of organochlorine compounds detected in sediments collected from the Mississippi River in 1989.

Sample Location	River Miles(s)	Sample Number	o.p'D0E	p.p'00E	0.p1000	p,p'000	0,p'DDT	p,p'00T
Gardner Division Mark Twain NWR	340-332.5 L							
Side slough/ upstream	on refuge	34/12a	ND	ND	ND	ND	ND	ND
Side slough/ mid sect.	on refuge	35/12b	ND	ND	ND	ND	ND	ND
Side slough/ downstream	on refuge	36/12c	ND	ND	ND	ND	ND	ND
Delair Division Mark Twain MWR	281.5-277.5 L							
N. backwater area Overflow pond Swan Lake Hercules Inc. Hercules Inc. /downstream	on refuge 280.5 L on refuge 281 R 280.5 R	39/MR-16 40/MR-17 41/MR-18 42/MR-14 43/MR-15	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND
Clarence Cannon MAR	263.5-261.0 R							
Western section Southern section Eastern section Side slough		44/MR-19 45/MR-20 46/MR-21 47/MR-22	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND
Batchtown Division Mark Twein MWR	251.5-246.0							
Upper Pool Middle Pool Lower Pool		48/MR-23 49/MR-24 50/MR-25	MD ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND

Table B-3 continued. Concentrations (mg/kg dry weight) of organochlorine compounds detected in sediments collected from the Mississippi River in 1989.

Sample Location	River Hile(s)	Sample Number	Arochlor 1242	Arochlor 1248	Arochlor 1254	Arochlor 1260	Toxaphene
Gardner Division	340-332.5 L						
Mark Twein MAR	340-332.7 E						
Side slough/	on refuge	34/12a	ND	ND	ND	ND	ND
upstream		75 4404			***		
Side slough/ mid sect.	on refuge	35/12b	ND	ND	ND	ND	MD
Side slough/	on refuge	36/12c	NO	ND	ND	MD	ND
downstream						•	
Delair Division	281.5-277.5 L						
Mark Twein MAR							
N. backwater area	on refuge	39/MR-16	ND	ND	ND	MD	MD
Overflow pond	280.5 L	40/MR-17	ND	ND	ND	ND	ND
Swan Lake	on refuge	41/MR-18	ND	ND	ND	ND	ND
Hercules Inc.	281 R	42/MR-14	MD	ND	ND	ND	NO
Hercules Inc.	280.5 R	43/MR-15	ND	ND	ND	ND	NO
/downstream							
Clarence Cannon MAR	263.5-261.0 R	:					
Western section		44/MR-19	ND	ND	ND	ND	ND
Southern section		45/MR-20	ND	ND	ND	ND	ND
Eastern section		46/MR-21	ND	ND	ND	ND	ND
Side slough		47/MR-22	ND	ND	ND	ND	ND
Batchtown Division Mark Twein MJR	251.5-246.0						
Upper Pool		48/MR-23	ND			ND	ND
Middle Pool		49/MR-24	ND			ND	ND
Lower Pool		50/MR-25	MD			ND	ND

Table B-4. Concentrations (mg/kg dry weight) of organochlorine compounds detected in sediments collected from the Mississippi River in 1989, Piasa Harbor/Dresser Island to Osbourne Side Channel.

Sample Location	River Mile(s)	Sample Number	Sample Wt.	204oisture	HCB	Alpha BHC	Beta BHC	Gamma BHC	Delta BHC	Heptachlor Epoxide
Piasa Marbor/ Dresser Island										
	209.0	51/MR-44	876	43.6	ND	ND	ND	ND	ND	ND
Alton, IL										ND
Jefferson Smurfit, Inc.	201.4 L	52/MR-26	1000	20.6	ND	ND	ND	ND	ND	ND
Wood River, IL										
Wood River STP Shell Oil Co.	197.9 L 197.3 L	53/MR-27 54/MR-28	765 765	22.4 27.6	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Hartford, IL										NO
Clark Oil Co.	196.9 L	55/MR-29	847	24.8	ND	ND	ND	ND	ND	ND
Granite City, IL										
Granite City STP/ Chain-of-Rocks Canal		56/MR-30	1100	29.6	ND	ND	ND	ND	ND	ND
East St. Louis, IL										
American Bottoms STP	178.0 L	57/MR-31	810	25.0	ND	ND	ND	ND	ND	ND
St. Louis/							2	NO	NU	NU
East St. Louis South	168.7	58/MR-32	882	45.4	ND	ND	ND	ND	ND	ND
Meramec River							2	NO	NU	טא
	160.0	59/MR-33	792	45.4	ND	ND	ND	ND	ND	ND
Herculaneum, MO										
Doe Run Herculaneum	152.0 R	60/MR-34	1380	20.6	ND	ND	ND	ND	ND	ND
Osbourne Side Channel							-	•••	NO	NU
	146.5 L	61/MR-35	789	54.8	ND	ND	ND	ND	ND	ND

Table 8-4 continued. Concentrations (mg/kg dry weight) of organochlorine compounds detected in sediments collected from the Mississippi River in 1989.

Sample Location	River Mile(s)	Sample Number	Oxy- chlordane	Alpha- chlordene	Gasses chlordane	Cis- Nonachlor	Trans- Nonachlor	Dieldrin	Endrin	Mirex
Piasa Marbor/ Dresser Island	209.0	51/MR-44	MD	ND	ND	ND	ND	ND	ND	ND
Alton, IL										
Jefferson Smurfit, Inc.	201.4 L	52/MR-26	ND	ND	ND	ND	ND	ND	ND	ND
Wood River, IL										
Wood River STP Shell Oil Co.	197.9 L 197.3 L	53/MR-27 54/MR-28	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Hartford, IL										
Clark Oil Co.	196.9 L	55/MR-29	ND	MD	ND	ND	ND	ND	ND	ND
Granite City, IL										
Granite City STP/ Chain-of-Rocks Canal		56/MR-30	ND	ND	ND	MD	MD	MD	ND	ND
East St. Louis, IL										
American Bottoms STP	178.0 L	57/MR-31	ND	ND	ND	MD	ND	ND	ND	ND
St. Louis/ East St. Louis South		50 mm 20				•••	NO.		100	ND
	168.7	58/MR-32	ND	ND	ND	ND	ND	ND	ND	ND
Meramec River	160.0	59/MR-33	ND	ND	ND	ND	ND	ND	ND	ND
Herculaneum, MO										
Doe Run Herculaneum	152.0 R	60/MR-34	ND	ND	ND	ND	ND	ND	MD	ND
Osbourne Side Channel	414 = 1	/4 mm ==	j, mark		ķ.	M.	No.	ND	ND	ND
	146.5 L	61/MR-35	ND	ND	ND	ND	ND	NU	NU	NU

Table B-4 continued. Concentrations (mg/kg dry weight) of organochlorine compounds detected in sediments collected from the Mississippi River in 1989.

Sample Location	River Hiles(s)	Sample Number	O,p'DDE	D.D'D0E	0.0001000	p,p1000	0,0001	p.p'001
Piasa Harbor/ Dresser Island	209.0	51/MR-44	ND	ND	MD	МО	ND	ND
Alton, IL								
Jefferson Smurfit, Inc.	201.4 L	52/MR-26	MD	MD	ND	MD	MD	ND
Wood River, IL								
Wood River STP Shell Oil Co.	197.9 L 197.3 L	53/MR-27 54/MR-28	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Hertford, IL								
Clark Oil Co.	196.9 L	55/MR-29	ND	MD	ND	ND	ND	MD
Granite City, IL								
Granite City STP/ Chain-of-Rocks Canal		56/MR-30	ND	ND	MD	МО	ND	ND
East St. Louis, IL								
American Bottoms STP	178.0 L	57/MR-31	ND	MD	ND	MD	ND	ND
St. Louis/ East St. Louis South								
Lest St. Logis South	168.7	58/MR-32	ND	ND	ND	ND	ND	ND
Meramec River	160.0	59/MR-33	ND	ND	ND	ND	ND	ND
Herculaneum, MO								
Doe Run Herculaneum	152.0 R	60/MR-34	ND	ND	ND	ND	ND	ND
Osbourne Side Channel								
	146.5 L	61/MR-35	ND	ND	ND	ND	ND	ND

1

Table 8-4 continued. Concentrations (mg/kg dry weight) of organochlorine compounds detected in sediments collected from the Mississippi River in 1989.

Sample Location	River Mile(s)	Sample Number	Arochlor 1242	Arochlor 1248	Arochlor 1254	Arochlor 1260	Toxaphene
Piese Nerbor/ Dresser Island	209.0	51/HR-44	MD	ND	ND	MO	ND
Alton, IL							
Jefferson Smurfit, Inc.	201.4 L	52/MR-26	MD	ND	ND	ND	ND
Wood River, IL							
Wood River STP Shell Oil Co.	197.9 L 197.3 L	53/HR-27 54/HR-28	ND NO	ND ND	ND ND	ND ND	ND ND
Martford, IL							
Clark Oil Co.	196.9 L	55/MR-29	MD	ND	ND	ND	ND
Granite City, IL							
Granite City STP/ Chain-of-Rocks Canal		56/MR-30	MD	MD	ND	MD	ND
East St. Louis, IL							
American Bottoms STP	178.0 L	57/MR-31	ND	ND	ND	ND	ND
St. Louis/ East St. Louis South							
	168.7	58/MR-32	ND	ND	ND	ND	ND
Meramec River	160.0	59/MR-33	ND	ND	ND	ND	ND
Herculaneum, MO							
Doe Run Herculaneum	152.0 R	60/MR-34	ND	ND	ND	ND	ND
Osbourne Side Channel							
	146.5 L	61/MR-35	MD	ND	ND	ND	MD

Table B-5. Concentrations (mg/kg dry weight) of organochlorine compounds detected in sediments collected from the Mississippi River in 1989, Crystal City, MO to Angelo Towhead.

Sample Location	River Mile(s)	Sample Number	Sample Wt.	24oisture	нсв	Alpha BHC	Beta BHC	Gamma BHC	Delta BHC	Heptachlor Epoxide
Crystal City, NO										
La Rouche Chemical Co.	145.0 R	62/MR-36	848	28.8	ND	ND	ND	ND	ND	ND
Establishment Island (vicinity)	132.0	63/MR-37	988	39.6	ND					NU
St. Genevieve			7.50	37.0	UN	ND	ND	ND	ND	ND
I sland (vicinity)	122.0	64/MR-38	846	42.6	ND	ND	ND	ND	ND	ND
Liberty Island (vicinity)	103.0	65/MR-39	912	53.0	ND	ND	ND	ND	ND	ND
Big Muddy/ Grand Tower Island (vicinity)	72.0 L	66/MR-43	866	51.0	ND	ND	ND	ND	ND	ND
Cape Girardeau, MO (vicinity)	49.5 R	67/MR-40	1010	39.2	ND	ND	ND	ND	ND	ND
Thebes, IL										
Ilada Energy	46.5 L	68/MR-41	1010	32.0	ND	ND	ND	ND	ND	ND
Brown's Bar	5.0	69/MR-42	841	57.8	ND	ND	ND	ND	ND	ND
Angelo Touhead	3.0 L	70/MR-45	868	49.6	NO	ND	ND	ND	ND	ND

Table B-5 continued. Concentrations (mg/kg dry weight) of organochlorine compounds detected in sediments collected from the Mississippi River in 1989.

Sample Location	River Mile(s)	Sample Number	0xy- chlordane	Alpha- chlordane	Gamma chlordane	Cis- Monachlor	Trans- Nonachlor	Dieldrin	Endrin	Mirex
Crystal City, NO										
La Rouche Chemical C	co. 145.0 R	62/MR-36	ND	ND	ND	ND	ND	₩D	ND	ND
Establishment Island								ND.	NO	NU
(vicinity)	132.0	63/MR-37	ND	ND	ND	ND	ND	ND	ND	ND
St. Genevieve Island										
(vicinity)	122.0	64/MR-38	ND	ND	ND	ND	ND	ND	ND	ND
Liberty Island (vicinity)	103.0	65/MR-39	ND	ND	ND	ND	ND	ND	ND	ND
Big Muddy/										
Grand Tower Island (vicinity)	72.0 L	66/MR-43	ND	ND	ND	ND	ND	ND	ND	ND
Cape Girardeau, NO (vicinity)	49.5 R	67/MR-40	ND	ND	ND	ND	ND	ND	ND	
Thebes, IL						•••	110	NU	NU	ND
Ilada Energy	46.5 L	68/MR-41	ND	ND	ND	ND	ND	ND	ND	ND
Brown's Bar	5.0	40 (MD 12							ND	NU
Angelo Touhead	J.V	69/MR-42	ND	ND	ND	ND	ND	ND	ND	ND
C 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3.0 L	70/MR-45	ND	ND	ND	ND	ND	ND	ND	ND

Table B-5 continued. Concentrations (mg/kg dry weight) of organochlorine compounds detected in sediments collected from the Mississippi River in 1989.

Sample Location	River Niles(s)	Sample Number	0,p'D0E	p,p'00€	0,01000	p.p'000	o.p'00T	p.p'00T
Crystal City, MO								
La Rouche Chemical Co.	145.0 R	62/MR-36	ND	ND	MD	ND	ND	ND
Establishment Island								
(vicinity)	132.0	63/MR-37	ND	ND	ND	ND	ND	ND
St. Genevieve Island		44 222 55						
(vicinity)	122.0	64/MR-38	ND	ND	ND	ND	ND	ND
Liberty Island (vicinity)	103.0	65/MR-39	ND	ND	ND	ND	ND	ND
Big Muddy/ Grand Tower Island								
(vicinity)	72.0 L	66/MR-43	ND	ND	ND	ND	ND	ND
Cape Girardeau, MO (vicinity)	49.5 R	67/MR-40	ND	ND	ND	ND	ND	ND
Thebes, IL								
Ilada Energy	46.5 L	68/MR-41	ND	ND	ND	ND	ND	ND
Brown's Bar	5.0	69/MR-42	ND	ND	ND	ND	МО	ND
Angelo Towhead	3.0 L	70/MR-45	0.07	.18	0.15	0.33	ND	ND

Table 8-5 continued. Concentrations (mg/kg dry weight) of organochlorine compounds detected in sediments collected from the Mississippi River in 1989.

Sample Location	River Mile(s)	Sample Number	Arochlor 1242	Arochlor 1248	Arochlor 1254	Arochlor 1260	Toxaphene
Crystal City, MO							
La Rouche Chemical Co.	145.0 R	62/MR-36	ND	ND	0.80	0.16	ND
Establishment Island (vicinity)	132.0	63/MR-37	ND	ND	ND	ND	ND
St. Genevieve Island (vicinity)	122.0	64/MR-38	ND	ND	ND	MD	ND
Liberty Island (vicinity)	103.0	65/MR-39	ND	ND	ND	ND	ND
Big Muddy/ Grand Tower Island (vicinity)	72.0 L	66/MR-43	ND	ND	ND	МО	ND
Cape Girardesu, MO (vicinity)	49.5 R	67/MR-40	ND	ND	ND	NO	ND
Thebes, IL							
Ilada Energy	46.5 L	68/MR-41	ND	ND	ND	ND	ND
Brown's Bar	5.0	69/MR-42	ND	ND	ND	ND	ND
Angelo Touhead	3.0 L	70/MR-45	ND	ND		ND	ND

Appendix C

Tables C-1 through C-5

Table C-1. Concentrations (mg/kg dry weight) of polycyclic aromatic hydrocarbon (PAH's) compounds detected in sediments collected from the Mississippi River in 1989, Dubuque, IA to Louisa Division Mark Twain NAR.

Sample Location	River Mile(s)	Sample Number	Sample Wt.	M oisture	Naptha- Lene	Fluo- rene	Phenan- threne	Anthra- cene	Fluoran- threne	Pyrene
Dubuque, IA Detention basin Detention basin	in pond in pond	1/1a 2/1b	911 649	18.0 29.0	0.01 0.09	0.08 0.15	0.96 0.88	0.20 0.23	1.09 2.11	0.75 1.85
Old Lead Mining Area										
Creek Creek Wise Lake (N end) Wise Lake (Mid sect.) Wise Lake (S end)	in creek in creek 562.5 L 561.0 L 560.0 L	3/2a 4/2b 5/2d 6/2e 7/2f	824 783 667	52.8 36.2 60.6	ND ND ND	ND ND ND	ND ND 0.02	ND ND ND	0.02 0.03 0.05	0.02 0.01 0.07
Big Timber Division Mark Twain MWR Big Denny Pond Little Denny Pond Round Pond	on refuge on refuge on refuge	13/5a 14/5b 15/5c	667 740 799	69.4 57.8 60.2	ND ND ND	ND ND ND	ND ND ND	ND ND ND	0.01 ND 0.02	0.03 0.07 0.02
Louisa Division Mark Twain NWR	441.5-438 R							MO	ND	0.02
Fox Pond Goose Pond Prairie Pocket Swarms Pond	on refuge on refuge on refuge on refuge	16/6a 17/6b 18/6c 19/6d	517 726 656 849	56.4 69.2 54.2 63.0	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND 0.04 ND	0.03 0.04 0.02

Table C-1 continued. Concentrations (mg/kg dry weight) of polycyclic aromatic hydrocarbon (PAH's) compounds detected in sediments collected from the Mississippi River in 1989.

-	River Mile(s)	Sample Number	1,2-benzan- thracene	Chrysene	Benzo(b)- fluoranthrene	Benzo(k)- fluoranthrene	Benzo(e)- pyrene	Benzo(a)- pyrene	1,2,5,6- dibenzanthracene
Dubuque, IA Detention basin Detention basin	in pond in pond	1/1a 2/1b	0.23 0.46	0.28 0.77	0.28 0.73	0.15 0.33	0.57 0.61	0.53 0.76	0.31 0.14
Old Lead Mining Area Creek Creek Wise Lake (N end) Wise Lake (Mid sect.) Wise Lake (S end)	in creek in creek 562.5 L 561.0 L 560.0 L	3/2a 4/2b 5/2d 6/2e 7/2f	ND ND NO	ND ND ND	0.04 0.01 0.10	ND ND 0.02	ND ND 0.02	0.02 0.01 0.02	0.02 ND ND
Big Timber Division Mark Twain MWR Big Denny Pond Little Denny Pond Round Pond	on refuge on refuge on refuge	13/5a 14/5b 15/5c	ND ND ND	ND ND ND	0.03 ND 0.07	ND ND ND	0.13 0.02 ND	0.13 ND 0.02	ND ND ND
Louisa Division Mark Twain NWR Fox Pond Goose Pond Prairie Pocket Swarms Pond	on refuge on refuge on refuge on refuge	16/6a 17/6b 18/6c 19/6d	ND ND ND ND	0.02 0.03 ND ND	0.02 0.03 ND 0.02	ND ND ND ND	ND ND 0.02 0.02	ND ND 0.04 0.02	ND ND ND ND

Table C-1 continued. Concentrations (mg/kg dry weight) of polycyclic aromatic hydrocarbon (PAN's) compounds detected in sediments collected from the Mississippi River in 1989.

Sample Location	River Miles(s)	Sample Number	Benzo(g,h,i) perylene	Qil/Grease
Dubuque, 1A				
Detention basin Detention basin	in pond in pond	1/1a 2/1b	1.01 .88	5378 4788
Old Lead Mining Area				
Creek Creek Wise Lake (N end) Wise Lake (Mid sect.) Wise Lake (S end)	in creek in creek 562.5 L 561.0 L 560.0 L	3/2a 4/2b 5/2d 6/2e 7/2f	0.02 0.01 0.05	466 219 812
Big Timber Division Mark Twein MAR	446.5-443			
Big Denny Pond Little Denny Pond Round Pond	on refuge on refuge on refuge	13/5a 14/5b 15/5c	0.03 0.02 0.02	294 758 653
Louisa Division Mark Twain NWR	441.5-438 R			
Fox Pond Goose Pond Prairie Pocket Swarms Pond	on refuge on refuge on refuge on refuge	16/6a 17/6b 18/6c 19/6d	0.02 0.03 0.02 MD	1353 1201 1790 1000

Table C-2. Concentrations (mg/kg dry weight) of polycyclic aromatic hydrocarbon (PAH's) compounds detected in sediments collected from the Mississippi River in 1989, Keithsburg Division Mark Twein MAR to Alexandria, MO.

Sample Location	River Mile(s)	Sample Number	Sample Wt.	%Moisture	Naptha- lene	Fluo- rene	Phenan- threne	Anthra- cene	Fluoran- threne	Pyrene
Keithsburg Division Mark Twain NAR	431-428 L									
Upstream side slough	on refuge	20/7a	694	56.8	ND	ND	ND	ND	0.02	0.02
Downstream side slough	on refuge	21/7b	556	76.0	ND	ND	ND	ND	ND	ND
Burlington, IA										
General Location General Location	403 R 401 R	22/8a 23/8b	700 639	60.4 61.8	0.02 ND	0.02 ND	0.22 ND	0.02 ND	0.17 0.05	0.15 0.07
Ft. Madison, IA										
Lead Is. (N end) General Location Devils Creek	387 R 381 R 378 R	24/9a 25/9b 26/9c	800 696	31.2 31.6	ND ND	ND ND	ND ND	0.01	0.05 0.01	0.02 ND
Alexandria, MO	357.0-353.0 R									
Gregory Landing (Grey Chute)	357.0 R	30/MR-47	744	60.6	ND	ND	ND	ND	MD	0.02
Gregory Landing (Fox River)		31/MR-48	673	46.4	ND	ND	ND	ND	ND	ND
Gregory Landing (Willow Lake)		32/MR-49	423	31.0	ND	ND	ND	ND	ND	0.01
Gregory Landing (Nelson Lake)		33/MR-50	765	57.8	ND	ND	ND	ND	ND	ND

Table C-2 continued. Concentrations (mg/kg dry weight) of polycyclic aromatic hydrocarbon (PAH's) compounds detected in sediments collected from the Mississippi River in 1989.

Sample Location	River Mile(s)	Sample Number	1,2-benzan- thracene	Chrysene	Benzo(b)- fluoranthrene	Benzo(k)- fluoranthrene	Benzo(e)- pyrene	Benzo(a)- pyrene	1,2,5,6- dibenzanthracene
Keithsburg Division Mark Twain MWR	431-428 L							0.03	ND
Upstream side	on refuge	20/7a	ND	0.02	0.02	ND	0.02	0.02	
slough Downstream side slough	on refuge	21/7b	ND	ND	0.08	ND	ND	ND	ND
Burlington, IA							0.02	0.02	0.02
General Location General Location	403 R 401 R	22/8a 23/8b	0.05 MD	0.07 0.02	0.05 0.02	0.02 ND	0.02	0.02	ND
Ft. Madison, IA								0.02	0.01
Lead Is. (N end)	387 R	24/9a	0.02	0.02	0.02	0.01	0.01	0.02	
General Location Devils Creek	381 R 378 R	25/9b 26/9c	ND	ND	0.01	ND	ND	0.02	ND
Alexandria, MO	357.0-353.0	R							
Gregory Landing	357.0 R	30/MR-47	ND	ND	0.05	ND	0.02	ND	ND
(Grey Chute)	337.10 K	31/MR-48	ND	ND	0.03	ND	ND	ND	0.01
Gregory Landing (Fox River)			ND	ND	0.02	ND	ND	ND	ND
Gregory Landing (Willow Lake)		32/MR-49	NU			ND	ND	ND	ND
Gregory Landing (Nelson Lake)		33/MR-50	ND	ND	0.02	NU.	175		

Table C-2 continued. Concentrations (mg/kg dry weight) of polycyclic aromatic hydrocarbon (PAH's) compounds detected in sediments collected from the Mississippi River in 1989.

Sample Location	River Miles(s)	Sample Number	Benzo(g,h,i) perylene	Oil/Greese
Keithsburg Division Mark Twein NWR	431-428 L			
Upstream side	on refuge	20/7 a	0.04	740
Downstream side slough	on refuge	21/7b	ND	999
Burlington, IA				
General Location	403 R	22/8a	0.02	136
General Location	401 R	23/8b	0.02	628
Ft. Madison, IA				
Lead Is. (N end) General Location	387 R 381 R	24/9a 25/9b	0.02	130
Devils Creek	378 R	26/9c	0.01	263
Alexandria, MO	357.0-353.0 R			
Gregory Landing (Grey Chute)	357.0 R	30/MR-47	0.02	1065
Gregory Landing (Fox River)		31/MR-48	0.03	298
Gregory Landing (Willow Lake)		32/MR-49	ND	ND
Gregory Landing (Nelson Lake)		33/MR-50	ND	ND

Table C-3. Concentrations (mg/kg dry weight) of polycyclic aromatic hydrocarbon (PAH's) compounds detected in sediments collected from the Hississippi River in 1989, Gardner Division Mark Tuein MAR to Batchtown Division Mark Tuein MAR.

Sample Location	River Hile(s)	Sample Mumber	Sample Wt.	20 loisture	Naptha- lene	Fluo- rene	Phenan- threne	Anthra- cene	Fluoren- threne	Pyrene
										,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Gardner Division Mark Twain NUR	340-332.5 L									
Side slough/ upstream	on refuge	34/12a	802	49.8	ND	ND	ND	ND	0.01	0.01
Side slough/ mid sect.	on refuge	35/12b	760	33.4	ND	ND	ND	ND	ND	ND
Side slough/ downstream	on refuge	36/12c	672	31.6	ND	ND	ND	ND	0.02	0.01
Delair Division Mark Twain NWR	281.5-277.5 L									
N. backwater area Overflow pond	on refuge 280.5 L	39/MR-16 40/MR-17	766 879	49.8 43.4	ND NO	ND ND	0.01 ND	ND ND	0.03 MD	0.03 MD
Swen Lake Hercules Inc.	on refuge	41/MR-18	718	41.4	ND	ND	ND	ND	ND	0.01
Hercules Inc. /downstream	281 R 280.5 R	42/MR-14 43/MR-15	8 26 915	49.6 28.0	ND ND	ND ND	0.01 0.01	ND ND	0.01 0.02	0.01 0.01
Clarence Cannon WWR	263.5-261.0 R									
Western section		44/MR-19	813	44.4	ND	ND	ND	ND	ND	ND
Southern section Eastern section		45/MR-20 46/MR-21	752	63.6	ND	ND	ND	ND	ND	ND
Side slough		47/MR-22	781 843	47.4 50.8	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Batchtown Division Mark Twein NWR	251.5-246.0									
Upper Pool		48/MR-23		57.6			ND		ND	ND
Middle Pool Lower Pool		49/MR-24 50/MR-25		59.0 59.4			ND ND		ND ND	ND ND

Table C-3 continued. Concentrations (mg/kg dry weight) of polycyclic aromatic hydrocarbon (PAH's) compounds detected in sediments collected from the Mississippi River in 1989.

Sample Location	River Mile(s)	Sample Number	1,2-benzan- thracene	Chrysene	Benzo(b)- fluoranthrene	Benzo(k)- fluoranthrene	Benzo(e)- pyrene	Benzo(a)- pyrene	1,2,5,6- dibenzanthracene
Gardner Division Mark Twain MWR Side slough/ upstream Side slough/	340-332.5 L on refuge on refuge	34/12a 35/12b	ND ND	ND ND	0.01 ND	ND ND	0.01 0.01 0.01	0.01 ND 0.01	ND ND 0.02
mid sect. Side slough/ downstream Delair Division	on refuge 281.5-277.5 L	36/12 c	ND	ND	0.01				
Mark Twain MMR N. backwater area Overflow pond Swan Lake Hercules Inc. Hercules Inc. /downstream	on refuge 280.5 L on refuge 281 R 280.5 R	39/MR-16 40/MR-17 41/MR-18 42/MR-14 43/MR-15	ND ND ND ND ND	0.01 ND ND ND ND	0.01 ND ND 0.01 ND	ND ND ND ND	0.01 0.01 ND ND ND	0.01 ND ND ND O.01	O.01 ND ND ND ND
Clarence Cannon NAR Western section Eastern section Side slough	263.5-261.0	R 45/MR-20 46/MR-21 47/MR-22	ND ND ND	ND ND ND	ND ND 0.02	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Batchtown Division Mark Twain MWR Upper Pool Middle Pool Lower Pool	251.5-246.0	48/MR-23 49/MR-24 50/MR-25	ND ND ND	ND ND ND	0.09 0.09 0.04	ND ND ND	ND ND ND	ND ND ND	ND ND ND

Table C-3 continued. Concentrations (mg/kg dry weight) of polycyclic aromatic hydrocarbon (PAR's) compounds detected in sediments collected from the Mississippi River in 1989.

Sample Location	River Miles(s)	Sample Number	Benzo(g,h,i) perylene	Oil/Gr ease
Gardner Division Mark Twein NUR	340-332.5 L			
Side slough/	on refuge	34/12a	ND	577
Side slough/ mid sect.	on refuge	35/12b	ND	135
Side slough/ downstream	on refuge	3 6/12c	0.04	438
Delair Division Mark Twein MAR	281.5-277.5 L			
N. backwater area	on refuge	39/MR-16	0.03	398
Overflow pond	280.5 L	40/MR-17	MD	388
Swan Lake	on refuge	41/MR-18	ND	358
Hercules Inc.	281 R	42/MR-14	MD	694
Hercules Inc. /downstream	280.5 R	43/MR-15	0.01	208
Clarence Cannon MAR	263.5-261.0 R			
Western section		44/MR-19	ND	503
Southern section		45/MR-20	ND	439
Eastern section		46/MR-21	ND	779
Side slough		47/MR-22	ND	691
Batchtown Division Mark Twein MAR	251.5-246.0			
Upper Pool		48/MR-23	0.02	ND
Middle Pool		49/MR-24	0.02	219
Lower Pool		50/MR-25	ND	ND

Table C-4. Concentrations (mg/kg dry weight) of polycyclic aromatic hydrocarbon (PAH's) compounds detected in sediments collected from the Mississippi River in 1989, Piasa Harbor/Dresser Island to Osbourne Side Channel.

Sample Location	River Mile(s)	Sample Number	Sample Wt.	% oisture	Naptha- Lene	Fluo- rene	Phenan- threne	Anthra- cene	Fluoran- threne	Pyrene
Piasa Narbor/ Dresser Island	209.0	51/MR-44	876	43.6	0.01	0.21	0.05	0.17	0.17	0.21
Alton, IL Jefferson Smurfit, Inc.	201.4 L	52/MR-26	1000	20.6	ND	0.01	0.18	0.05	0.15	0.10
Wood River, IL Wood River STP Shell Oil Co.	197.9 L 197.3 L	53/MR-27 54/MR-28	765 765	22.4 27.6	0.01 0.01	0.02 0.02	0.15 0.11	0.02 ND	0.19 0.02	0.12 0.12
Martford, IL Clark Oil Co.	196.9 L	55/MR-29	847	24.8	0.03	0.03	0.39	0.07	0.40	0.35
Granite City, IL Granite City STP/ Chain-of-Rocks Canal		56/MR-30	1100	29.6	0.39	0.80	2.6	0.52	2.6	1.8
East St. Louis, IL American Bottoms STP	178.0 L	57/MR-31	810	25.0	ND	ND	0.06	0.01	0.02	0.02
St. Louis/ East St. Louis South	168.7	58/MR-32	882	45.4	0.01	0.01	0.21	0.03	0.31	0.20
Meramec River	160.0	59/MR-33	79 2	45.4	ND	ND	0.03	ND	0.05	0.03
Herculaneum, MO Doe Run Herculaneum	152.0 R	60/MR-34	1380	20.6	ND	0.02	0.11	ND	0.07	0.06
Osbourne Side Channel	146.5 L	61/MR-35	789	54.8	.02	0.02	0.08	0.08	0.13	0.08

Table C-4 continued. Concentrations (mg/kg dry weight) of polycyclic aromatic hydrocarbon (PAH's) compounds detected in sediments collected from the Mississippi River in 1989.

Sample Location	River Mile(s)	Sample Numberthrap	1,2-benzan- ene	Chrysene	Benzo(b)- fluoranthrene	Benzo(k)- fluoranthrene	Benzo(e)- pyrene	Benzo(a)- pyrene dibenz	1,2,5,6- enthracene
Piesa Herbor/ Dresser Island	209.0	51/NR-44	0.05	0.10	0.07				•
Alton, IL	207.0	31/RK-44	0.05	0.10	0.03	0.01	0.01	0.07	0.01
Jefferson Smurfit, Inc.	201.4 L	52/MR-26	0.08	0.07	0.05	0.01	0.10	0.05	0.01
Wood River, IL									
Wood River STP Shell Oil Co.	197.9 L 197.3 L	53/MR-27 54/MR-28	0.07 0.02	0.09 0.03	0.07 0.02	0.02 0.01	0.06 0.11		0.07 0.05
Martford, IL									
Clark Oil Co.	196.9 L	55/MR-29	0.11	0.06	0.15	0.09	0.17	0.07	0.19
Granite City, IL									
Granite City STP/ Chain-of-Rocks Canal		56/MR-30	0.93	.2	0.51	0.21	0.80	0.59	0.09
East St. Louis, IL									
American Bottoms STP	178.0 L	57/MR-31	ND	0.01	0.01	ND	0.01	0.01	ND
St. Louis/ East St. Louis Sout	.								
cast st. tours sout	168.75	57/MR-32	0.07	0.10	0.10	0.01	0.21	0.10	0.01
Meramec River	160.0	59/MR-33	ND	ND	0.01	ND	0.01	0.01	ND
Herculaneum, MO									
Doe Run Herculaneum	152.0 R	60/MR-34	ND	0.01	0.01	ND	ND	ND	ND
Osbourne Side Channel	146.5 L	61/MR-35	0.02	0.04	.04	0.02	0.04	0.04	0.02

Table C-4 continued. Concentrations (mg/kg dry weight) of polycyclic aromatic hydrocarbon (PAM's) compounds detected in sediments collected from the Mississippi River in 1989.

Sample Location	River Hiles(s)	Sample Number	Benzo(g,h,i) perylene	Oil/Gr eese
Piasa Narbor/ Dresser Island	209.0	51/MR-44	0.03	ND
Alton, IL				
Jefferson Smurfit, Inc.	201.4 L	52/MR-26	0.05	ND
Wood River, IL				
Wood River STP Shell Oil Co.	197.9 L 197.3 L	53/MR-27 54/MR-28	0.06 0.01	270 2707
Hartford, IL				
Clark Oil Co.	196.9 L	55/MR-29	0.09	1569
Granite City, IL				
Granite City STP/ Chain-of-Rocks Canal		56/MR-30	0.51	4815
East St. Louis, IL				
American Bottoms STP	178.0 L	57/MR-31	0.01	ND
St. Louis/ East St. Louis South				
East St. Louis South	168.7	58/MR-32	0.09	860
Meramec River	160.0	59/MR-33	0.01	109
Herculaneum, MO				
Doe Run Herculaneum	152.0 R	60/MR-34	ND	125
Osbourne Side Channel	146.5 L	61/MR-35	0.04	199
	·		3,04	

Table C-5. Concentrations (mg/kg dry weight) of polycyclic aromatic hydrocarbon (PAH*s) compounds detected in sediments collected from the Mississippi River in 1989, Crystal City, MO to Angelo Touhead.

Sample Location	River Hile(s)	Sample Number	Sample Wt.	2 Hoisture	Naptha- lene	Fluo- rene	Phenan- threne	Anthra- cene	Fluoran- threne	Pyrene
Crystal City, MO										
La Rouche Chemical Co.	145.0 R	62/MR-36	848	28.8	ND	ND	0.04	0.01	0.07	0.05
Establishment Island (vicinity)	132.0	63/MR-37	988	39.6	ND	0.01	0.06	ND	0.11	0.06
St. Genevieve Island (vicinity)	122.0	64/MR-38	846	42.6	ND	0.03	0.15	0.01	0.06	0.06
Liberty Island (vicinity)	103.0	65/MR-39	912	53.0	ND	ND	0.04	ND	0.08	0.96
Big Muddy/ Grand Tower Island (vicinity)	72.0 L	66/MR-43	866	51.0	ND	ND	0.04	ND	0.08	0.08
Cape Girardeau, MO (vicinity)	49.5 R	67/MR-40	1010	39.2	ND	ND	0.04	ND	0.06	0.08
Thebes, IL										
Ílada Energy	46.5 L	68/MR-41	1010	32.0	ND	ND	0.02	ND	0.05	0.05
Brown's Bar	5.0	69/MR-42	841	57.8	ND	ND	0.04	ND	0.09	0.09
Angelo Townead	3.0 L	70/MR-45	868	49.6	ND	ND	0.03	ND	0.09	0.07

Table C-5 continued. Concentrations (mg/kg dry weight) of polycyclic aromatic hydrocarbon (PAH's) compounds detected in sediments collected from the Mississippi River in 1989.

Sample Location	River Mile(s)	Sample Number	1,2-benzan- thracene	Chrysene	Benzo(b)- fluoranthrene	Benzo(k)- fluoranthrene	Benzo(e)- pyrene	Benzo(a)- pyrene diber	1,2,5,6- eanthracene
Crystal City, MO									
La Rouche Chemical (Co. 145.0 R	62/MR-36	0.02	0.04	0.01	0.01	0.01	0.01	0.01
Establishment Island	470.0	49 59							
(vicinity)	132.0	63/MR-37	0.03	0.04	0.03	ND	0.06	0.01	0.04
St. Genevieve Island (vicinity)	122.0	64/MR-38	0.01	0.03	0.03	0.01	0.01	0.01	0.05
Liberty Island (vicinity)	103.0	65/MR-39	0.02	0.04	0.02	0.02	0.02	0.04	0.04
Big Muddy/ Grand Tower Island (vicinity)	72.0 L	66/MR-43	0.04	0.04	0.02	ND	0.04	0.02	0.06
Cape Girardeau, MO (vicinity)	49.5 R	67/MR-40	0.01	0.03	0.01	0.01	0.03	0.03	0.06
Thebes, IL									
Ilada Energy	46.5 L	68/MR-41	0.02	0.02	0.02	0.01	0.02	0.02	0.04
Brown's Bar	5.0	69/MR-42	0.02	0.04	0.02	0.02	0.11	0.02	0.07
Angelo Towhead	.0 L	70/MR-45	0.01	0.01	0.01	0.01	0.01	0.01	0.01

Table C-5 continued. Concentrations (mg/kg dry weight) of polycyclic aromatic hydrocarbon (PAN's) compounds detected in sediments collected from the Mississippi River in 1989.

Sample Location	River Miles(s)	Sample Number	Benzo(g,h,i) perylene	Oil/Grease
Crystal City, MO				
La Rouche Chemical Co.	145.0 R	62/MR-36	0.02	126
Establishment Island (vicinity)	132.0	63/HR-37	0.03	314
St. Genevieve Island (vicinity)	122.0	64/MR-38	0.01	452
Liberty Island (vicinity)	103.0	65/MR-39	0.02	ND
Big Muddy/ Grand Tower Island (vicinity)	72.0 L	66/MR-43	0.02	204
Cape Girardeau, MO (vicinity)	49.5 R	67/MR-40	0.01	ND
Thebes, IL				
Ilada Energy	46.5 L	68/MR-41	0.02	161
Brown's Bar	.0	69/MR-42	0.02	118
Angelo Towhead	.0 L	70/MR-45	0.01	297



Table D-1. 1989 Mississippi River solid phase sediment and water 96-hour fathead minnow bioassay results (total mortality at 96-hours of exposure).

Fathead minnow mortality (number dead/number tested): River Sample Number Control Sample Sample Location Mile(s) Dubuque, IA 10/20 1/1a 0/20 Detention basin in pond 20/20 2/1b 0/21 Detention basin in pond Old Lead Mining Area 0/20 0/20 3/20 Creek in creek in creek 4/2b 0/20 0/20 Creek 0/20 0/20 562.5 L 5/2d 4/20 Wise Lake (N end) 6/20 Wise Lake (Mid sect.) 561.0 L 6/2**e** Wise Lake (S end) 560.0 L 7/2f 0/20 18/20 Bettendorf, IA ALCOA 489 R 8/3a 0/21 0/20 488 R 9/3b 3/20 0/21 ALCOA/downstream Muscatine, IA 1/20 Monsanto Corp. 449.9 R 10/48 1/20 11/4b 0/21 1/20 Monsanto/upstream 450.3 R 449.3 R 12/4c 0/21 1/20 Monsanto/downstream 446.5-443 **Big Timber Division** Mark Twain MAR 0/20 13/5a 0/20 Big Denny Pond on refuge 14/5b 0/20 1/20 Little Denny Pond on refuge 0/20 Round Pond on refuge 15/5c 2/20 Louise Division 441.5-438 R Mark Twein MJR Fox Pond on refuge 16/6a 0/20 0/20 17/6b 0/21 1/20 Goose Pond on refuge 0/20 Prairie Pocket on refuge 18/6c 0/20 Swarms Pond on refuge 19/6d 2/20 4/20 Keithsburg Division 431-428 L Mark Twain MAR 0/20 4/20 Upstream side on refuge 20/78 slough 0/20 1/20 Downstream side 21/7b on refuge slough Burlington, IA 0/21 20/20 403 R 22/8a General Location 13/21 General Location 401 R 23/8b 0/21 Ft. Medison, IA 387 R 24/9a 0/20 6/20 Lead Is. (N end) General Location 0/20 4/20 381 R 25/9b Devils Creek 378 R 26/9c 0/20 6/20

Table D-1 continued.

1989 Mississippi River solid phase sediment and water 96-hour fathead minnow bioassay results (total mortality at 96-hours of exposure).

Fathead mirnow mortality (number dead/number tested): River Sample Sample Mile(s) Number Control Sample Location George Arthur Refuge (IDOC) 0/20 0/21 27/10a 374.5 General location Keokuk, IA 0/20 0/21 28/11a General Location 365 R 1/20 29/11b 2/20 363 R General Location 357.0-353.0 R Alexandria, MO 18/21 1/21 30/MR-47 Gregory Landing 357.0 R (Grey Chute) 2/21 1/21 31/MR-48 Gregory Landing (Fox River) 1/20 1/21 Gregory Landing 32/MR-49 (Willow Lake) 1/20 1/21 33/MR-50 Gregory Landing (Nelson Lake) 340-332.5 L Gardner Division Mark Twain MUR 13/20 2/20 34/12a Side slough/ on refuge upstream 3/20 0/20 35/12b on refuge Side slough/ mid sect. 2/20 2/20 on refuge 36/12c Side slough/ downstream Hannibel, MO 2/20 2/20 37/13a 319.7 R American Cyanamid Co. /downstream 2/20 1/20 38/13b in bay Bay de Charles (where ditch enters bay) 281.5-277.5 L Delair Division Mark Twain MUR 2/20 0/20 39/MR-16 on refuge N. backwater area 1/21 1/20 40/MR-17 280.5 L Overflow pond 0/20 1/21 41/MR-18 on refuge Swan Lake 1/21 0/20 42/MR-14 281 R Hercules Inc. 0/20 43/MR-15 0/20 Hercules Inc. 280.5 R /downstream 263.5-261.0 R Clarence Cannon MAR 0/20 1/20 44/MR-19 Western section 0/21 1/21 45/MR-20 Southern section 46/MR-21 0/21 0/20 Eastern section 47/MR-22 0/20 0/20 Side slough

Table D-1 continued. 1989 Mississippi Rive

1989 Mississippi River solid phase sediment and water 96-hour fathead minnow bioassay results (total mortality at 96-hours of exposure).

			Fathead minr (number dead	now mortality d/number tested):
Sample Location	River Mile(s)	Sample Number	Control	Sample
Batchtown Division Mark Twain NWR	251.5-246.0			
Upper Pool Middle Pool Lower Pool		48/MR-23 49/MR-24 50/MR-25	1/21 1/21 0/20	1/20 1/20 1/20
Piasa Harbor/ Dresser Island	209.0	51/MR-44	0/20	1/21
Alton, IL				
Jefferson Smurfit, Inc.	201.4 L	52/MR-26	0/20	1/20
Wood River, IL				
Wood River STP Shell Oil Co.	197.9 L 197.3 L	53/MR-27 54/MR-28	0/20 0/20	1/20 0/19
Hartford, IL				
Clark Oil Co. Granite City, IL	196.9 L	55/MR-29	0/20	0/21
Granite City STP/ Chain-of-Rocks Canal		56/MR-30	0/20	1/20
East St. Louis, IL				
American Bottoms STP	178.0 L	57/MR-31	0/20	20/20
St. Louis/ East St. Louis South	168.7	58/MR-32	0/20	10/20
Meramec River	160.0	59/MR-33	0/20	0/21
Herculaneum, MO				
Doe Run Herculaneum	152.0 R	60/MR-34	0/20	0/20
Osbourne Side Channel	146.5 L	61/MR-35	0/20	0/20
Crystal City, MO				
La Rouche Chemical Co.	. 145.0 R	62/MR-36	0/20	1/20
Establishment Island (vicinity)	132.0	63/MR-37	0/20	0/20
St. Genevieve Island (vicinity)	122.0	64/MR-38	0/20	0/20
Liberty Island (vicinity)	103.0	65/MR-39	1/21	2/20

Table D-1 continued.

1989 Mississippi River solid phase sediment and water 96-hour fathead minnow bioassay results (total mortality at 96-hours of exposure).

nued.	1989 Mississip bioassay resul	pi River solid ts (total mort	ality at 96-hours	of exposure).			
				Fathead minnow mortality (number dead/number tested			
Sample 1	Location	River Mile(s)	Sample Number	Control	Sample		
Big Mud Grand (vici	Tower Island	72.0 L	66/MR-43	0/20	0/20		
Cape Gi (vici	rardesu, MO nity)	49.5 R	67/MR-40	1/21	1/20		
Thebes,	IL						
Ilada	Energy	46.5 L	68/MR-41	0/20	0/20		
Brown's	Bar .	25.0	69/MR-42	0/20	1/20		
Angelo	Touhead	3.0 L	70/MR-45	0/20	0/20		

Appendix E

.

Table E-1. Water chemistry data - solid phase sediment and water 96-hour fathead minnow bioassays of sediments collected from the Mississippi River in 1989.

Sample Location	River Mile(s)	Sample Number	Temp (deg.C°)	pH	DO	NH3-N (mg/L)	Total NH ₃ (mg/l)	Unionized NH ₃ (mg/L)	Total Hardness (mg/L_CaCO ₂	Specific Conductance (mmhos)
Dubuque, IA			<u>-</u>							
Detention basin	in pond	1/1a	21	7.6	5.9	6.8	8.3	0.1	255	510
Detention basin	in pond	2/1b	21	7.5	5.6	16	19.4	0.26	125	200
Old Lead Mining Area										
Creek	in creek	3/2a	21	7.6	4.8	3.1	3.8	0.06	375	380
Creek	in creek	4/2b	21	7.6	7.4	3.2	3.9	0.07	330	340
Wise Lake (N end)	562.5 L	5/2d-1	21	7.7	7.9	2.4	2.9	0.06	280	390
		5/2d-2	21	7.7	7.6	2.1	2.6	0.05	300	370
Wise Lake (Mid sect.)	561.0 L	6/2e	21	7.8	8.1	2.2	2.7	0.07	275	360
Wise Lake (S end)	560.0 L	7/2f	21	7.6	7.8	7.5	9.1	0.02	215	350
Bettendorf, IA										
ALCOA	489 R	8/3a	21	7.3	6.7	3.8	4.6	0.03	300	530
ALCOA/downstream	488 R	9/36	21	7.5	6.6	5.0	6.1	0.06	210	500
Muscatine, IA										
Monsanto Corp.	449.9 R	10/4a	24	8.0	4.9	2.4	2.9	0.12	180	420
Monsanto/upstream	450.3 R	11/4b	21	7.3	6.8	2.8	3.4	0.02	230	470
Monsanto/downstream	449.3 R	12/4c	21	7.0	6.6	4.8	5.8	0.02	270	600
Big Timber Division Mark Twain NWR	446.5-443									
Big Denny Pond	on refuge	13/5a	24	7.9	8.1	2.3	2.8	0.11	370	740
01 6 00, 1 0		13/5a	24	8.0	8.1	1.8	2.2	0.11	360	740
Little Denny Pond	on refuge		24	7.1	8.2	1.6	1.9	0.01	170	390
Round Pond	on refuge		24	7.7	8.1	3.9	4.7	0.12	220	380
Louise Division Herk Twein MAR	441.5-438	R								
Fox Pond	on refuge	16/6a	23	7.2	7.4	2.4	2.9	0.02	170	320
Goose Pond	on refuge	-	22	7.7	8.2	7.6	9.2	0.21	230	420
Prairie Pocket	on refuge		21	7.3	7.2	2.9	3.5	0.03	180	300
Swarms Pond	on refuge		24	7.6	8.2	4.9	6.0	0.12	235	370
· • • • • • • • • • • • • • • • •						***		7	200	5.0

Table E-1 continued. Unter chemistry data - solid phase sediment and water 96-hour fathead minnow bioessays of sediments collected from the Mississippi River in 1989.

Sample Location	River Hile(s)	Sample Number	Temp (deg.C*)	pil	DO	NH3-N (mg/L)	Total NH ₃ (mg/L)	Unionized WH ₇ (mg/L)	Total Hardness <u>(mg/L CaCO</u> ,	Specific Conductance (mmhos)
Keithsburg Division Mark Twein NUR	431-428 L								J	
Upstream side slough	on refuge	20/7a	24	7.7	8.1	3.6	4.4	0.11	160	360
Downstream side slough	on refuge	21/7b	21	7.3	7.3	5.6	6.8	0.06	240	400
Burlington, IA										
General Location General Location	403 R 401 R	22/8a 23/8b-1 8b-2	21 21 21	7.0 7.3 7.3	6.1 6.9 6.6	22 10 11	26.7 12.2 13.4	1.1 0.08 0.09	200 150 190	789 370 470
Ft. Medison, IA										
Lead Is. (N end) General Location Devils Creek	387 R 381 R 378 R	24/9a 25/9b 26/9c	21 21 21	7.6 7.5 7.6	7.75 7.1 7.35	2.9 3.8 4.2	3.5 4.6 5.1	0.06 0.06 0.09	230 190 190	310 320 290
George Arthur Refuge (IDOC)										
General location	374.5	27/10a	21	7.4	7.2	2.7	3.3	0.03	140	370
Keokuk, IA										
General Location General Location	365 R 363 R	28/11a 29/11b	21 24	7.7 7.9	7.1 8.2	1.8 2.7	2.2 3.3	0.05 0.13	150 255	290 360
Alexandria, MO	357.0-353	.0 R								
Gregory Landing (Grey Chute)	357.0 R	30/MR-47	22	7.4	7.6	16	19.4	0.22	200	365
Gregory Landing (Fox River)		31/MR-48	22	7.5	7.7	3.2	3.9	0.06	225	310
Gregory Landing (Willow Lake)		32/MR-49	22	7.0	7.8	0.3	0.36	0.002	150	320
Gregory Landing (Nelson Lake)		33/MR-50	22	7.3	'.8	1.2	.5	0.01	250	480

Table E-1 continued. Weter chemistry data - solid phase sediment and water 96-hour fathead minnow bioassays of sediments collected from the Mississippi River in 1989.

Sample Location		Sample Tem Number (de	p g.C°)	pH	ю	NH ₃ -N (ms/L)	Total NH ₂ (mg/L)	Unionized NH _Z (mg/L)	Total Wardness (mg/L CaCO ₂	Specific Conductance (umhos)
Gardner Division Mark Twein MAR	340-332.5	L								
Side slough/ upstream	on refuge	34/12a	24	7.5	7.8	6.8	8.3	0.14	270	460
Side slough/ mid sect.	on refuge	35/12b	24	7.4	8.0	4.5	5.5	0.07	150	350
Side slough/ downstream	on refuge	3 6/12c	24	7.5	7.5	6.1	7.4	0.12	250	400
Hannibel, MO										
American Cyanamid Co. /downstream	319.7 R	37/13a	24	7.7	8.0	3.8	4.6	0.12	185	310
Bay de Charles (where ditch enters bay)	in bey	38/13b	24	7.6	7.4	3.0	3.6	0.07	210	570
Delair Division Mark Twain MWR	281.5-277.	5 L								
N. backwater area Overflow pond Swan Lake Hercules Inc. Hercules Inc. /downstream	on refuge 280.5 L on refuge 281 R 280.5 R	39/NR-16 40/NR-17 41/NR-18 42/NR-14 43/NR-15	22 22 22 22 22 21	7.3 7.4 7.4 7.3 7.4	7.4 7.7 7.8 7.7 7.6	9.5 2.2 1.4 9.4 3.6	1.5 2.7 1.7 1.4 4.4	0.10 0.03 0.02 0.10 0.05	210 165 160 190 200	380 310 290 330 400
Clarence Cannon MWR	263.5-261.	0 R								
Western section Southern section Eastern section Side slough		44/MR-19 45/MR-20 46/MR-21 47/MR-22	22 22 22 21	7.6 7.5 7.2 7.1	7.5 7.7 7.5 7.8	0.9 2.3 1.4 1.8	1.1 2.8 1.7 2.2	0.02 0.04 0.01 0.01	215 180 128 150	380 270 190 260
Batchtoun Division Mark Twain NGR	251.5-246.	0								
Upper Pool Middle Pool Lower Pool		48/MR-23 49/MR-24 50/MR-25	22 22 21	7.6 7.8 7.5		4.2 3.5 4.3	5.1 4.3 5.2	0.09 0.12 0.07		

Table E-1 continued. Water chemistry data - solid phase sediment and water 96-hour fathead minnow bioassays of sediments collected from the Mississippi River in 1989.

	River	Sample Temp Number (des) 1, C*)	pH	DO	NH ₃ -N (mg/L)	Total NH _Z (mg/L)	Unionized NH ₃ (mg/L)	Total Hardness (mg/L CaCO ₂	Specific Conductance (mmhos)
Sample Location	Mile(s)	HUMBET (UE)	1.4.							
Piasa Marbor/ Dresser Island	209.0	51/MR-44 MR-44	22 22	7.5 7.4	7.9 7.9	7.3 7.1	8.9 8.6	0.13 0.10	110 125	320 340
Aless VI		HK-44			•••					
Alton, IL Jefferson Smurfit, Inc.	201.4 L	52/MR-26	23	7.9	7.6	1.2	1.5	0.06	200	400
Wood River, IL										
Wood River STP Shell Oil Co.	197.9 L 197.3 L	53/MR-27 54/MR-28	23 23	7.6 7.7	7.6 7.9	2.5 3.3	3.0 4.0	0.06 0.10	165 165	360 400
Hartford, IL										
Clark Oil Co.	196.9 L	55/MR-29	23	7.8	7.8	2.1	2.6	0.08	200	400
Granite City, IL										
Granite City STP/ Chain-of-Rocks Canal		56/MR-30	23	7.7	7.8	3.2	3.9	0.09	190	410
East St. Louis, IL										
American Bottoms STP	178.0 L	57/MR-31	23	7.6	7.7	15	18.2	0.44	160	550
St. Louis/ East St. Louis South	168.7	58/MR-32	22	7.6	7.8	13	15.8	0.28	250	550
Meramec River	160.0	59/MR-33	22	7.6	7.8	3.0	3.6	0.06	180	340
Herculaneum, MO										
Doe Run Herculaneum	152.0 R	60/MR-34 MR-34	23 23	8.4 8.4	7.7 7.8	0.1 0.2	0.12 0.24	0.01 0.03	200 250	450 450
Osbourne Side Channel	A44 E .	44 MD: 25	22	7.6	7.9	5.2	6.3	0.11	235	480
	146.5 L	61/MR-35	22	7.0	1.9	7.2	0.5	••••		

Table E-1 continued. Water chemistry data solid phase sediment and water 96-hour fathead minnow bioessays of sediments collected from the Mississippi River in 1989.

Sample Location	River Mile(s)	Sample Number	Temp (deg.C°)	pH	DO	NH ₃ -N (mg/L)	Total NH ₃ (mg/L)	Unionized NH ₃ (mg/L)	Total Hardness (mg/L CaCO ₂	Specific Conductance (mmhos)
Crystal City, MO										
La Rouche Chemical Co.	145.0 R	62/MR-36	5 23	8.0	7.7	5.2	6.3	0.30	195	430
Establishment										
Island (vicinity)	132.0	63/MR-37	7 22	7.6	7.8	6.5	7.9	0.14	200	440
St. Genevieve										
I sland (vicinity)	122.0	64/MR-38	3 22	7.7	7.8	3.6	4.4	0.10	175	420
Liberty Island (vicinity)	103.0	65/MR-39	9 22	7.6	8.0	5.6	6.8	0.12	165	420
Big Muddy/ Grand Tower Island (vicinity)	72.0 L	66/MR-4	3 22	7.6	7.8	4.6	5.6	0.10	220	480
Cape Girardeau, MO (vicinity)	49.5 R	67/MR-4	0 22	7.7	7.8	4.8	5.8	0.13	230	400
Thebes, IL										
Ilada Energy	46.5 L	68/MR-4	1 23	7.9	7.6	0.9		0.04	210	370
Brown's Bar		40 MP 1	2 22	7.7	7.8	4.6	5.7	0.13	90	490
	5.0	69/MR-4	C CC		7.0	7.0	2.1	V. 10	, ,	
Angelo Touhead	3.0 L	70/MR-4	5 22	7.6	8.1	6.4	7.8	0.14	25	390